Parallel Genetic Algorithm
Implementation for BOINC

Malek SMAOUI FEKI*Viet Huy NGUYEN®and Marc GARBEY

aDepartment of Computer Science, University of HoustonQ48&lhoun rd, Houston,
Texas, 77004

Abstract. In this paper we present our implementation of a Genetic Allgorion
the BOINC volunteer computing platform. Our main objectivedscbnstruct a
computational framework that applies to the optimum desigblpro of prairies.
This ecology problem is characterized by a large parametgrnsésy multi-
objective functions, and the presence of multiple localroptthat reflects biodiver-
sity. Our approach consists in enhancing the iterativeqissanous) master-worker
genetic algorithm to overcome the limitations of volatile amdeliable distributed
computing resources considering a sufficiently large numbeolanteer comput-
ers. Though volunteer computing is known to be much less paifigrthan paral-
lel environments such as clusters and grids, our GA solutiamstto exhibit com-
petitive performance.

Keywords. Genetic Algorithms, Volunteer Computing, Prairie Optimizati
Ecology, Clonal plants

Introduction
Parallel Genetic Algorithms

Evolutionary algorithms (EA), namely Genetic Algorithm@4), have been proved to
be efficient optimization methods. GA's were clearly foripedl in the late 80’s and be-
ginning of the 90’s with the works of D. E. Goldberg and J. RzK[,2]. Since then,

they have been successfully applied to complex optimingtimblems [3,4,5,6]. GA's

are inspired from nature. They use the principals of repctida and natural selection
ensuring the dominance of individuals of the most fit speclé®e GA starts with an

initial population of potential solutions of the optimizat problem (individuals) that

are represented as strings of genes. This population etive better fit population by
crossover and mutation of some of the candidate soluti@sdduction process). The
individuals participating in the reproduction process sekected according to their fit-
ness to the problem i.e. how close they are to the optimizatdution.

According to the objective function computation needs, arfzady require a considerable
amount of computation. Thus, one of the most important esées in GA's was their

parallelization. The simplest parallelization scheme @Glebal Master-worker distribu-

tion of fitness function evaluations [7]. However, Parai&'s (PGA) models represent
a broader class of algorithms with enhanced search stest§®i9]. These PGA's have
been implemented for networks of heterogeneous worksiatfgarallel mainframes and
cluster grids [10].

Volunteer Computing

Nowadays, volunteer computing [11,12] is recognized asblegiand cost-effective par-
allel framework. Indeed, the access to High Performance fivimg (HPC) facilities
such as parallel mainframes, grids, elastic clouds, e¬ affordable by every scien-
tist. Volunteer computing, however, is an arrangement betwthe scientist or the team
of scientists and a group of volunteers in which computirgpoeces are donated to a
research project to satisfy its computation needs. Comgugsources are mainly idle
cpu cycles of Internet connected PC’s owned by individualmstitutions. Obviously,
such an arrangement cuts significantly the computationresqseof the project but offers
limited freedom of use of the computing resources and loweiopmance. BOINC [13]
is a well known middleware which enables the utilizationwéts volunteered computing
resources. BOINC has a server/client architecture andoigegirbased. In other words,
clients running on the volunteered PC'’s can be attachedferelnt projects running on
different, independently administrated, servers. Thaguee allows resource sharing be-
tween projects. However, the main limitation of BOINC istthéstributed tasks should
be completely independent (embarrassing parallelisnik iStdue to the fact that com-
mercial Internet is the only available and affordable comivation medium between
the computing entities.

The master-worker PGA has an obvious embarrassing paail@nd a structure that
coincides with BOINC architecture. The main difficulty howe is that the hosts of
a BOINC project can be extremely volatile and perhaps usidi Provided that the
project is attracting few thousands of volunteers and thesges are overcome, this
framework could be ideal for applications having a largec®domain dimension and
high fithess evaluation computation requirements.

Target application: the Virtual Prairie project

The Virtual Prairie (ViP) project is a study of the dynamidsctonal plant populations
and which goals are guiding engineering of prairies andihglpiodiversity preservation
[14,15,16]. The application simulates the growth of pesirof clonal plants (c.f. figure
1) using a parametric Individual Based Model (IBM) for eadanp and a set of rules
defining the interactions between the different plants. Muelel may take more than
16 variable parameters per species, and the dimension sktreh space for a prairie
with half a dozen of species end up with about 100 parametergtimize! The model is
highly stochastic: two runs with the same set of parametaegavould produce different
outcomes. Thus, each simulation outputs a number of prariermance metrics. These
are averaged over multiple runs of the simulation for theespiarameter set. So, the
actual outputs of the application are averages of prainpeance metrics which can
be optimized using GAs. The choice of the objective functiperformance metric)
depends on the goals of the study which is not often compldétebwn. In order to
study the model and investigate its emerging propertiasypeter space browsing have
been carried out for isolated plants and for competing plarithin prairies thanks to
the ViP BOINC project [16,15]. More simulations are still finogress on this project.
Detailed information can be found at the web site http:£wcsuh.edu/virtual-prairie/.
The computation requirements of a prairie simulation rarfgem few minutes to few
hours depending on the problem size and the time scale. Geagbjective function is

500

400

200

200

100

a &0 100 180 200 250 300 350 400

Figurel. Example of a single run prairie simulation output.

clear, the ViP project can make good use of a PGA implememtath top of BOINC to
fine tune the optimization process.

This paper aims at describing the methods used for PGA ingiéetion on BOINC
and the challenges that faced this work. While we have caaigaptimizations using
the virtual prairie application, we have set up a simplifiesh¢hmark application with
multiple competitive maximum that can be better used foluatéon purposes.

1. Genetic Algorithm Library

The intuitive way to tackle this project is to leverage anmgeurce GA library such
as PGAPACK [17], a Parallel Genetic Algorithm library deye¢d at Argonne National
Lab by David Levine in 1995. We used this library to write a teasvorker GA code
optimizing the Virtual Prairie application with 16 pararaet. We tested this code on
a 72 cores SiCortex machine. The GA converged in less thang&@@ration to the
global maximum. The result was confirmed by the space brgnwiready carried out
on BOINC (described above). However, using this library,reeognized the complex-
ity and constraints that this tool would impose, when conmigjrit with BOINC com-
ponents. So, we decided to write our own GA library (MCS_Gdé\pain more control
over the data structures. MCS_GA offers a multitude of d&ffie GA operators: selection
methods, crossover and mutation operators. In additigoroitides MPI implementa-
tions of multiple parallel genetic algorithm models indhgi master-worker, multi-deme
(multi-population) and steady-state.

2. PGA Model for BOINC
2.1. How does BOINC operates?

As mentioned previously, BOINC [13] has a server/clienh#iecture. The main compo-
nents of the server are (c.f. figure 2) work handling daemodsaeripts, a data base, afile
repository and a web interface. The vital work handling deesnfor most projects are
the work generator, the feeder, the scheduler, the validatd the assimilator. BOINC
uses abstractions namely workunits and results for worklivagn A workunit is a refer-
ence to an application and one or a set of input files. A resaltreference to a workunit
and one or a set of output files. Workunits and results are podated through the data

BOINC Server
‘%\é Web interface

—
| =

\ /

<=y Scheduler
_M File repository
Work generator

Figure 2. BOINC architecture.

base. Typically, the work generator creates or retrievagtifiles and creates correspond-
ing workunits in the data base. The feeder creates resultadainprocessed workunits

found in the data base. The scheduler will send the unpredessults to clients request-

ing work. The validator verifies the correctness of outpesfileturned by the clients after
the computation is done. The assimilator aggregates arigppmsesses these outputs.

2.2. GA model design

2.2.1. Implementation and challenges

The design of a master-worker GA using BOINC work handlingrdans consists in
incorporating the generational loop in the work generdtbis latter would create input
files containing each the gene string of one or a set of indal&lof the population. It
would create the corresponding workunits and leave the fiotire feeder and scheduler
to scatter the jobs. Knowing that the assimilator is the tegponsible for assimilating
computation results, it should then notify the work genarat the availability of current
generation fitness results as soon as they are ready.

BOINC uses redundancy to deal with the volatility of clieated unreliability of their
results. Thus, for each workunit (in our case fitness evalngd)), multiple replicas of
the same task (result) are produced and sent to differemitsli The validation process
will ensure that, for each workunit, the output producedizydifferent hosts match. The
replication and validation process may lead to multiplesc®s:

e The optimal situation is that initially two results are sent to performing hosts.
The two clients immediately process the tasks and send bedkata, right away.
The two outputs match and the evaluation is done.

e In most cases, clients do not start computation immedidtetause they might
be busy doing other computations for other projects. Thathg each task has
a deadline and the client should return the results beferel#iadline is met. In
case the deadline is passed, the server will issue anotheegptica. The server
creates another job replica also in case the output of theofies do not match.
These situations can significantly slow down the whole mec@nce the above
described synchronous master-worker PGA has to wait fon tisecontinue with
the next generation.

2.2.2. lterative versus steady-state algorithms

To overcome the above limitation, there are two possibletiwis:

Figure 3. Plot of the benchmark functiogn

e One can use a master-worker steady-state algorithm where igno iterations:
the population is continuously updated by creating newviddals when clients
request work and replacing old individuals by the new onesmtlients return
the new fitness values. Desell et al. described their imphatien of this algo-
rithm in [18] (where they call it Asynchronous Genetic Sé&drc

e An alternative solution is to conserve the iterative chmaof the master-worker
model while tweaking the algorithm and the BOINC projectfaguration.

We adopted the second solution here for two main reasorst, f&éir our target applica-
tion, the optimization purpose is not to find the absoluténopin but rather end up with
a sample population that represents regions of the domaimdra number of signif-
icant maxima: multimodal optimization. Niching technigue GAs allow such proce-
dure. However, all the known niching techniques have besigded for iterative GAs.
Thus, we need to prepare the ground for such addition to theritim. Besides, al-
though earlier studies showed that steady-state PGAs meyasonell as (or even out-
perform) iterative GAs, our experience with steady-staés wot as successful. Indeed,
using the MPI implementation of the steady-state algoriimd the iterative master-
worker algorithms in MCS_GA we carried out some performaame robustness com-
parison through benchmark optimizations. We ran 20 ingsf the maximization of
the benchmark function (c.f. figure 3):

g:10,1] x[0,1] — R

sin(u® (2% +y?)) exp =¥’

g(%y) = Tog (0t 22 +y2) where p =4, A=12and 0 =2

with the same selection, crossover and mutation operatatsGsA parameters using
the iterative master-worker and the steady-state masigtawalgorithms. We chose this
benchmark function because several local maximum of the sader coexist, which is
typical of our prairie model. Our comparison (c.f. Table h)the benchmark showed
that though steady-state requires less fitness evaluatidsgess robust: results quality
was much poorer.

GAs are not parameter-free methods, so we decided not totiten€A parameter to
our specific target application, but rather to use commosgdunutation and crossover
rates. It would be difficult to optimize the parameter set @A for complex models
such that of the Virtual Prairie application.

Iterative master-workerl Steady-state master-worker
average nbr of evaluations 5615.2 2335.45
result average 1.330928 1.235792
result standard deviation 0.057996 0.177931
best result obtained 1.350497 1.350497

Table 1. Iterative versus steady-state comparative study

2.2.3. The iterative solution

We present here the heuristic rules that we added to the Gairrgron top of BOINC.
These heuristics aim mainly at controlling the time reqiiier the evaluation of the ob-
jective values of the population at each generation.

As soon as jobs for one generation are created, a deadlinedsfor the assimilator to
report their outcome to the work generator. This deadlineiiiglized by an experimen-
tal estimation which depend (1) on the average executioa tifithe objective function
evaluation and (2) the average time needed for the schetdudertter the jobs (depend-
ing on the population size). When, the assimilator meetsdidglline two scenarios are
possible:

e All the results were already received and sent to the worlegsar.

e Some results are still missing. In which case, the assianilabuld notify the
work generator of the end of computation if it already reediat least 90% of the
populations individuals fithess values or will extend thadlme if this threshold
is not yet met.

e To lower the risk of missing some critical information in treamaining 10% individu-
als, the work generator tries to ensure that the 90% indal<hat have been evaluated
would be the best fit ones of the generation. So, at creatios, the work generator fa-
vors some individuals by assigning higher priorities tdrtkerresponding jobs. Higher
priorities are assigned to individuals with higher proltigbof being more fit. This prob-
ability is inversely proportional to the distance betweantenew individual and the best
individuals of the past generation. Such probability caralse computed according to
other similarity criteria between new and old individuals.

e To speed up the processing of each generation, jobs witlehgiorities are sent only
to reliable hosts which have a short turnaround time and loar €ate. Besides, these
jobs see their initial deadline reduced by a given ratio etiog to their priority level.
That is why these jobs will have a very good chance of beingmet before the gener-
ation deadline fixed for the assimilator.

¢ Finally all the jobs are replicated more than twice whileitloaitputs are assimilated
as soon as the two first matching results are received. Tthises the effect of late and
erroneous results. This technique is affordable only with®C because the computing
resources are abundant and cheap.

The job deadline, the priority of the job, and the redundéacyor of the job can be dy-
namically adjusted according to the behavior of the firsiegations. A statistical model
that can be dynamically fitted on the run would be presentea Gompanion journal

paper.

2.3. Tests and results

The ViP BOINC project served as a testbed for our GA. We ranimizations of the
benchmark functiory described in section 2.2.2 using a population of 100 indiald,
proportional selection and two-point crossover. The GAveoges, when for 10 gener-
ations, the maximum obtained remains unchanged. The cetipuif the benchmark
function is very fast which is not the case of real applicadidcso, we added 200 GFLOP
of dummy cpu usage in the objective function to simulate &application.

We ran the same maximizations using the master-worker MiRlase of MCS_GA on:

e SiCortex computer using 100 cores (700 MHz).
e Beowulf cluster using 34 Opteron processors (2 GHz).

BOINC SiCortex | Beowulf
objective function computation time (avg) variable 1270s 365s
GA execution time (avg) 63988 s 71305 67384
average result obtained 1.350497 | 1.350497| 1.350497

Table 2. Performance of GA on different platforms

Table 2 details the results and performance obtained. Wslioat the techniques used
in our GA solution on BOINC allowed to obtain a comparablefpenance to that of a
medium size SiCortex or a small size Beowulf cluster, whermgosed relatively short
deadlines for the jobs (2 hours). However, BOINC offers twarenadvantages:

e the costs of acquiring, powering and maintaining clustermuch higher than
those of a BOINC server setup and maintenance. So, BOINOniez@ viable
solution for scientists who can not afford access to pdredimputers.

e with the abundance of the computing resources offered byNBO(the ViP
project has more than 2000 hosts), we can perform optimizatith large pop-
ulation sizes without dramatically increasing the ovegaéicution time. The only
overhead that will be added is the time needed for scatténmgbs and which is
much lower than the objective function computation costgegpopulations are
much needed for multimodal optimizations.

3. Conclusion

In a quest for exploiting a cheap and abundant computatisouree, that is volunteer
computing, this paper describes the implementation of atiemlgorithm on top of
BOINC. Though the iterative master-worker parallel genakjorithm fits the distributed
character of this environment, the volatility and unreligpof the resources offered by
BOINC slows down significantly the process. The enhancesremided to this algorithm
combined to the proper use of BOINC features (like priositigrovided execution times
competitive with those of much more expensive parallel cating resources. We expect
that a single optimization of a virtual prairie with 5 specigould require a dedicated
Beowulf cluster with a thousand processor during severaitmdecause in our con-
tinuous dialogue with the interdisciplinary team of ecaétg, we keep improving our
model as more experimental result in the field come, we vielunteer computing as
the best solution to our ViP project.

Acknowledgements

We would like to thank K. Crabb for supporting the ViP BOINMjarct at the University
of Houston Research Computing Center as well as D. Andetiseiprincipal investiga-
tor of BOINC from University of California at Berkeley.

References

(1]
(2]
(3]

[4]
[5]

(6]

[7]
(8]
[9]
(10]
(11]

(12]

(23]

[14]

(15]

[16]

(17]

(18]

D. E. Goldberg.Genetic Algorithms in Search, Optimization, and Machinarbang. Addison-Wesley
Professional, January 1989.

J. R. Koza.Genetic Programming: On the Programming of Computers byrides Natural Selectian
The MIT press, Cambridge, MT, December 1992.

L. Dumas and L. El Alaoui. How genetic algorithms can impravpacemaker efficiency. BECCO
'07: Proceedings of the 2007 GECCO conference companionaretc and evolutionary computation
pages 2681-2686, New York, NY, USA, 2007. ACM.

Y. Gao, H. Rong, and J. Z. Huang. Adaptive grid job schedulwith genetic algorithms.Future
Generation Computer Systen24 (1):151-161, 2005.

S. Karungaru, M. Fukumi, and N. Akamatsu. Automatic humaedanorphing using genetic algorithms
based control points selectiomternational Journal of Innovative Computing, Inforn@ti& Control,
3(2):247-256, April 2007.

M. Olhofer, T. Arima, T. Sonoda, and B. Sendhoff. Optimisatof a stator blade used in a transonic
compressor cascade with evolution strategies. In |. Parndéer,eAdaptive Computing in Design and
Manufacture (ACDM)pages 45-54. Springer Verlag, 2000.

E. Cantu-Paz. Designing efficient master-slave pargigietic algorithms, 1997. Available online at:
ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IIliGALsI®04.ps.Z.

E. Cantu-Paz. A survey of parallel genetic algorithn3alculateurs Paralleles, Reseaux et Systems
Repartis 10(2):141-171, 1998.

M. Nowostawski and R. Poli. Parallel genetic algorithrasdnomy. InProceedings of the third inter-
national conference on Knowledge-based information Eggyiimg System@ages 88-92, August 1999.
D. Lim, O.Y.S, Y. Jin, B. Sendhoff, and L. B. A. Efficientdriarchical parallel genetic algorithms using
grid computing.Future Generation Computer Systeri8(4):658-670, 2007.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and eriMmer. Seti@home: an experiment in
public-resource computingcommunications of the ACM5(11):56-61, 2002.

D. P. Anderson and G. Fedak. The computational and stopa¢ential of volunteer computing. In
CCGRID ’'06: Proceedings of the Sixth IEEE International $@sium on Cluster Computing and the
Grid, pages 73-80, Washington, DC, USA, 2006. IEEE Computer §ocie

D. P. Anderson. Boinc: A system for public-resource catimg and storage. IGRID '04: Proceedings
of the 5th IEEE/ACM International Workshop on Grid Compgtipages 4—-10, Washington, DC, USA,
2004. IEEE Computer Society.

M. Garbey, C. Mony, and M. Smaoui. Fluid flow - agent basgtrid model for the simulation of
virtual prairies. Irto appear soon in the proceedings of the 20th Parallel Coatfnrial Fluid Dynamics
ConferenceMay 2008.

M. Smaoui, M. Garbey, and C. Mony. Virtual prairie: goiggeen with volunteer computing. 2008
IEEE Asia-Pacific Services Computing Conferempages 427-434. IEEE Computer Society, December
2008.

C. Mony, M. Garbey, M. Smaoui, and M. Benot. Optimal prafifer clonal plant growth: a modelling
approach. submitted to a journal in ecology, 2009.

D. Levine. Users guide to the pgapack parallel gendgorithm library, technical report anl-991 8,
1995. Technical report, Argonne National Laboratory, 1996APACK is available via anonymous ftp
at ftp.mcs.anl.gov or from URL http://info.mcs.anl.gov/fpimpack/pgapack.tar.Z.

T. Desell, B. Szymanski, and C. Verla Asynchronous gersgtarch for scientific modeling on large-
scale heterogeneous environmentdHEE International Symposium on Parallel and DistributeP
cessing, 2008ages 1-12, Miami, Florida. April 2008.

