
Parallel Genetic Algorithm
Implementation for BOINC

Malek SMAOUI FEKIaViet Huy NGUYENaand Marc GARBEYa

a Department of Computer Science, University of Houston, 4800 Calhoun rd, Houston,
Texas, 77004

Abstract. In this paper we present our implementation of a Genetic Algorithm on
the BOINC volunteer computing platform. Our main objective is to construct a
computational framework that applies to the optimum design problem of prairies.
This ecology problem is characterized by a large parameter set, noisy multi-
objective functions, and the presence of multiple local optima that reflects biodiver-
sity. Our approach consists in enhancing the iterative (synchronous) master-worker
genetic algorithm to overcome the limitations of volatile andunreliable distributed
computing resources considering a sufficiently large number of volunteer comput-
ers. Though volunteer computing is known to be much less performing than paral-
lel environments such as clusters and grids, our GA solution turns to exhibit com-
petitive performance.

Keywords. Genetic Algorithms, Volunteer Computing, Prairie Optimization,
Ecology, Clonal plants

Introduction

Parallel Genetic Algorithms

Evolutionary algorithms (EA), namely Genetic Algorithms (GA), have been proved to
be efficient optimization methods. GA’s were clearly formalized in the late 80’s and be-
ginning of the 90’s with the works of D. E. Goldberg and J. R. Koza[1,2]. Since then,
they have been successfully applied to complex optimization problems [3,4,5,6]. GA’s
are inspired from nature. They use the principals of reproduction and natural selection
ensuring the dominance of individuals of the most fit species. The GA starts with an
initial population of potential solutions of the optimization problem (individuals) that
are represented as strings of genes. This population evolves to a better fit population by
crossover and mutation of some of the candidate solutions (reproduction process). The
individuals participating in the reproduction process areselected according to their fit-
ness to the problem i.e. how close they are to the optimization solution.
According to the objective function computation needs, a GAmay require a considerable
amount of computation. Thus, one of the most important extensions in GA’s was their
parallelization. The simplest parallelization scheme is aGlobal Master-worker distribu-
tion of fitness function evaluations [7]. However, ParallelGA’s (PGA) models represent
a broader class of algorithms with enhanced search strategies [8,9]. These PGA’s have
been implemented for networks of heterogeneous workstations, parallel mainframes and
cluster grids [10].



Volunteer Computing

Nowadays, volunteer computing [11,12] is recognized as a viable and cost-effective par-
allel framework. Indeed, the access to High Performance Computing (HPC) facilities
such as parallel mainframes, grids, elastic clouds, etc ...is not affordable by every scien-
tist. Volunteer computing, however, is an arrangement between the scientist or the team
of scientists and a group of volunteers in which computing resources are donated to a
research project to satisfy its computation needs. Computing resources are mainly idle
cpu cycles of Internet connected PC’s owned by individuals or institutions. Obviously,
such an arrangement cuts significantly the computation expenses of the project but offers
limited freedom of use of the computing resources and lower performance. BOINC [13]
is a well known middleware which enables the utilization of such volunteered computing
resources. BOINC has a server/client architecture and is project based. In other words,
clients running on the volunteered PC’s can be attached to different projects running on
different, independently administrated, servers. This feature allows resource sharing be-
tween projects. However, the main limitation of BOINC is that distributed tasks should
be completely independent (embarrassing parallelism). This is due to the fact that com-
mercial Internet is the only available and affordable communication medium between
the computing entities.
The master-worker PGA has an obvious embarrassing parallelism and a structure that
coincides with BOINC architecture. The main difficulty however is that the hosts of
a BOINC project can be extremely volatile and perhaps unreliable. Provided that the
project is attracting few thousands of volunteers and theseissues are overcome, this
framework could be ideal for applications having a large search domain dimension and
high fitness evaluation computation requirements.

Target application: the Virtual Prairie project

The Virtual Prairie (ViP) project is a study of the dynamics of clonal plant populations
and which goals are guiding engineering of prairies and helping biodiversity preservation
[14,15,16]. The application simulates the growth of prairies of clonal plants (c.f. figure
1) using a parametric Individual Based Model (IBM) for each plant and a set of rules
defining the interactions between the different plants. Themodel may take more than
16 variable parameters per species, and the dimension of thesearch space for a prairie
with half a dozen of species end up with about 100 parameters to optimize! The model is
highly stochastic: two runs with the same set of parameter values would produce different
outcomes. Thus, each simulation outputs a number of prairieperformance metrics. These
are averaged over multiple runs of the simulation for the same parameter set. So, the
actual outputs of the application are averages of prairie performance metrics which can
be optimized using GA’s. The choice of the objective function (performance metric)
depends on the goals of the study which is not often completely known. In order to
study the model and investigate its emerging properties, parameter space browsing have
been carried out for isolated plants and for competing plants within prairies thanks to
the ViP BOINC project [16,15]. More simulations are still inprogress on this project.
Detailed information can be found at the web site http://vcsc.cs.uh.edu/virtual-prairie/.
The computation requirements of a prairie simulation ranges from few minutes to few
hours depending on the problem size and the time scale. Once the objective function is



Figure 1. Example of a single run prairie simulation output.

clear, the ViP project can make good use of a PGA implementation on top of BOINC to
fine tune the optimization process.

This paper aims at describing the methods used for PGA implementation on BOINC
and the challenges that faced this work. While we have carriedout optimizations using
the virtual prairie application, we have set up a simplified benchmark application with
multiple competitive maximum that can be better used for evaluation purposes.

1. Genetic Algorithm Library

The intuitive way to tackle this project is to leverage an open source GA library such
as PGAPACK [17], a Parallel Genetic Algorithm library developed at Argonne National
Lab by David Levine in 1995. We used this library to write a master-worker GA code
optimizing the Virtual Prairie application with 16 parameters. We tested this code on
a 72 cores SiCortex machine. The GA converged in less than 100generation to the
global maximum. The result was confirmed by the space browsing already carried out
on BOINC (described above). However, using this library, werecognized the complex-
ity and constraints that this tool would impose, when combining it with BOINC com-
ponents. So, we decided to write our own GA library (MCS_GA) to gain more control
over the data structures. MCS_GA offers a multitude of different GA operators: selection
methods, crossover and mutation operators. In addition, itprovides MPI implementa-
tions of multiple parallel genetic algorithm models including master-worker, multi-deme
(multi-population) and steady-state.

2. PGA Model for BOINC

2.1. How does BOINC operates?

As mentioned previously, BOINC [13] has a server/client architecture. The main compo-
nents of the server are (c.f. figure 2) work handling daemons and scripts, a data base, a file
repository and a web interface. The vital work handling daemons for most projects are
the work generator, the feeder, the scheduler, the validator and the assimilator. BOINC
uses abstractions namely workunits and results for work handling. A workunit is a refer-
ence to an application and one or a set of input files. A result is a reference to a workunit
and one or a set of output files. Workunits and results are manipulated through the data



Figure 2. BOINC architecture.

base. Typically, the work generator creates or retrieves input files and creates correspond-
ing workunits in the data base. The feeder creates results for the unprocessed workunits
found in the data base. The scheduler will send the unprocessed results to clients request-
ing work. The validator verifies the correctness of output files returned by the clients after
the computation is done. The assimilator aggregates and post processes these outputs.

2.2. GA model design

2.2.1. Implementation and challenges

The design of a master-worker GA using BOINC work handling daemons consists in
incorporating the generational loop in the work generator.This latter would create input
files containing each the gene string of one or a set of individuals of the population. It
would create the corresponding workunits and leave the floorto the feeder and scheduler
to scatter the jobs. Knowing that the assimilator is the unitresponsible for assimilating
computation results, it should then notify the work generator of the availability of current
generation fitness results as soon as they are ready.
BOINC uses redundancy to deal with the volatility of clientsand unreliability of their
results. Thus, for each workunit (in our case fitness evaluation(s)), multiple replicas of
the same task (result) are produced and sent to different clients. The validation process
will ensure that, for each workunit, the output produced by the different hosts match. The
replication and validation process may lead to multiple scenarios:

• The optimal situation is that initially two results are sentout to performing hosts.
The two clients immediately process the tasks and send back the data, right away.
The two outputs match and the evaluation is done.

• In most cases, clients do not start computation immediatelybecause they might
be busy doing other computations for other projects. That iswhy each task has
a deadline and the client should return the results before the deadline is met. In
case the deadline is passed, the server will issue another job replica. The server
creates another job replica also in case the output of the first ones do not match.
These situations can significantly slow down the whole process since the above
described synchronous master-worker PGA has to wait for them to continue with
the next generation.

2.2.2. Iterative versus steady-state algorithms

To overcome the above limitation, there are two possible solutions:



Figure 3. Plot of the benchmark functiong

• One can use a master-worker steady-state algorithm where there is no iterations:
the population is continuously updated by creating new individuals when clients
request work and replacing old individuals by the new ones when clients return
the new fitness values. Desell et al. described their implementation of this algo-
rithm in [18] (where they call it Asynchronous Genetic Search)

• An alternative solution is to conserve the iterative character of the master-worker
model while tweaking the algorithm and the BOINC project configuration.

We adopted the second solution here for two main reasons. First, for our target applica-
tion, the optimization purpose is not to find the absolute optimum but rather end up with
a sample population that represents regions of the domain around a number of signif-
icant maxima: multimodal optimization. Niching techniques in GAs allow such proce-
dure. However, all the known niching techniques have been designed for iterative GAs.
Thus, we need to prepare the ground for such addition to the algorithm. Besides, al-
though earlier studies showed that steady-state PGAs may work as well as (or even out-
perform) iterative GAs, our experience with steady-state was not as successful. Indeed,
using the MPI implementation of the steady-state algorithmand the iterative master-
worker algorithms in MCS_GA we carried out some performanceand robustness com-
parison through benchmark optimizations. We ran 20 instances of the maximization of
the benchmark functiong (c.f. figure 3):

g : [0, 1] × [0, 1] → R

g(x, y) = sin(µ2(x2+y2)) exp−λ(x−y)2

log(θ+x2+y2) where µ = 4, λ = 12 and θ = 2

with the same selection, crossover and mutation operators and GA parameters using
the iterative master-worker and the steady-state master-worker algorithms. We chose this
benchmark function because several local maximum of the same order coexist, which is
typical of our prairie model. Our comparison (c.f. Table 1) on the benchmark showed
that though steady-state requires less fitness evaluations, it is less robust: results quality
was much poorer.
GAs are not parameter-free methods, so we decided not to tunethe GA parameter to

our specific target application, but rather to use commonly used mutation and crossover
rates. It would be difficult to optimize the parameter set of aGA for complex models
such that of the Virtual Prairie application.



Iterative master-worker Steady-state master-worker

average nbr of evaluations 5615.2 2335.45

result average 1.330928 1.235792

result standard deviation 0.057996 0.177931

best result obtained 1.350497 1.350497

Table 1. Iterative versus steady-state comparative study

2.2.3. The iterative solution

We present here the heuristic rules that we added to the GA running on top of BOINC.
These heuristics aim mainly at controlling the time required for the evaluation of the ob-
jective values of the population at each generation.
As soon as jobs for one generation are created, a deadline is fixed for the assimilator to
report their outcome to the work generator. This deadline isinitialized by an experimen-
tal estimation which depend (1) on the average execution time of the objective function
evaluation and (2) the average time needed for the schedulerto scatter the jobs (depend-
ing on the population size). When, the assimilator meets thisdeadline two scenarios are
possible:

• All the results were already received and sent to the work generator.
• Some results are still missing. In which case, the assimilator would notify the

work generator of the end of computation if it already received at least 90% of the
populations individuals fitness values or will extend the deadline if this threshold
is not yet met.

• To lower the risk of missing some critical information in theremaining 10% individu-
als, the work generator tries to ensure that the 90% individuals that have been evaluated
would be the best fit ones of the generation. So, at creation time, the work generator fa-
vors some individuals by assigning higher priorities to their corresponding jobs. Higher
priorities are assigned to individuals with higher probability of being more fit. This prob-
ability is inversely proportional to the distance between each new individual and the best
individuals of the past generation. Such probability can bealso computed according to
other similarity criteria between new and old individuals.
• To speed up the processing of each generation, jobs with higher priorities are sent only
to reliable hosts which have a short turnaround time and low error rate. Besides, these
jobs see their initial deadline reduced by a given ratio according to their priority level.
That is why these jobs will have a very good chance of being returned before the gener-
ation deadline fixed for the assimilator.
• Finally all the jobs are replicated more than twice while their outputs are assimilated
as soon as the two first matching results are received. This reduces the effect of late and
erroneous results. This technique is affordable only with BOINC because the computing
resources are abundant and cheap.
The job deadline, the priority of the job, and the redundancyfactor of the job can be dy-
namically adjusted according to the behavior of the first generations. A statistical model
that can be dynamically fitted on the run would be presented ina companion journal
paper.



2.3. Tests and results

The ViP BOINC project served as a testbed for our GA. We ran maximizations of the
benchmark functiong described in section 2.2.2 using a population of 100 individuals,
proportional selection and two-point crossover. The GA converges, when for 10 gener-
ations, the maximum obtained remains unchanged. The computation of the benchmark
function is very fast which is not the case of real applications. So, we added 200 GFLOP
of dummy cpu usage in the objective function to simulate a real application.
We ran the same maximizations using the master-worker MPI version of MCS_GA on:

• SiCortex computer using 100 cores (700 MHz).
• Beowulf cluster using 34 Opteron processors (2 GHz).

BOINC SiCortex Beowulf

objective function computation time (avg) variable 1270 s 365 s

GA execution time (avg) 63988 s 71305 67384

average result obtained 1.350497 1.350497 1.350497

Table 2. Performance of GA on different platforms

Table 2 details the results and performance obtained. It shows that the techniques used
in our GA solution on BOINC allowed to obtain a comparable performance to that of a
medium size SiCortex or a small size Beowulf cluster, when weimposed relatively short
deadlines for the jobs (2 hours). However, BOINC offers two more advantages:

• the costs of acquiring, powering and maintaining clusters is much higher than
those of a BOINC server setup and maintenance. So, BOINC becomes a viable
solution for scientists who can not afford access to parallel computers.

• with the abundance of the computing resources offered by BOINC (the ViP
project has more than 2000 hosts), we can perform optimizations with large pop-
ulation sizes without dramatically increasing the overallexecution time. The only
overhead that will be added is the time needed for scatteringthe jobs and which is
much lower than the objective function computation cost. Large populations are
much needed for multimodal optimizations.

3. Conclusion

In a quest for exploiting a cheap and abundant computation resource, that is volunteer
computing, this paper describes the implementation of a genetic algorithm on top of
BOINC. Though the iterative master-worker parallel genetic algorithm fits the distributed
character of this environment, the volatility and unreliability of the resources offered by
BOINC slows down significantly the process. The enhancements added to this algorithm
combined to the proper use of BOINC features (like priorities) provided execution times
competitive with those of much more expensive parallel computing resources. We expect
that a single optimization of a virtual prairie with 5 species would require a dedicated
Beowulf cluster with a thousand processor during several month. Because in our con-
tinuous dialogue with the interdisciplinary team of ecologists, we keep improving our
model as more experimental result in the field come, we view volunteer computing as
the best solution to our ViP project.



Acknowledgements

We would like to thank K. Crabb for supporting the ViP BOINC project at the University
of Houston Research Computing Center as well as D. Anderson,the principal investiga-
tor of BOINC from University of California at Berkeley.

References

[1] D. E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley
Professional, January 1989.

[2] J. R. Koza.Genetic Programming: On the Programming of Computers by Means of Natural Selection.
The MIT press, Cambridge, MT, December 1992.

[3] L. Dumas and L. El Alaoui. How genetic algorithms can improvea pacemaker efficiency. InGECCO
’07: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation,
pages 2681–2686, New York, NY, USA, 2007. ACM.

[4] Y. Gao, H. Rong, and J. Z. Huang. Adaptive grid job scheduling with genetic algorithms.Future
Generation Computer Systems, 21(1):151–161, 2005.

[5] S. Karungaru, M. Fukumi, and N. Akamatsu. Automatic human faces morphing using genetic algorithms
based control points selection.International Journal of Innovative Computing, Information & Control,
3(2):247–256, April 2007.

[6] M. Olhofer, T. Arima, T. Sonoda, and B. Sendhoff. Optimisation of a stator blade used in a transonic
compressor cascade with evolution strategies. In I. Parmee, editor, Adaptive Computing in Design and
Manufacture (ACDM), pages 45–54. Springer Verlag, 2000.

[7] E. Cantu-Paz. Designing efficient master-slave parallelgenetic algorithms, 1997. Available online at:
ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/97004.ps.Z.

[8] E. Cantu-Paz. A survey of parallel genetic algorithms.Calculateurs Paralleles, Reseaux et Systems
Repartis, 10(2):141–171, 1998.

[9] M. Nowostawski and R. Poli. Parallel genetic algorithms taxonomy. InProceedings of the third inter-
national conference on Knowledge-based information Engineering Systems, pages 88–92, August 1999.

[10] D. Lim, O. Y.S, Y. Jin, B. Sendhoff, and L. B. A. Efficient hierarchical parallel genetic algorithms using
grid computing.Future Generation Computer Systems, 23(4):658–670, 2007.

[11] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: an experiment in
public-resource computing.Communications of the ACM, 45(11):56–61, 2002.

[12] D. P. Anderson and G. Fedak. The computational and storage potential of volunteer computing. In
CCGRID ’06: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the
Grid, pages 73–80, Washington, DC, USA, 2006. IEEE Computer Society.

[13] D. P. Anderson. Boinc: A system for public-resource computing and storage. InGRID ’04: Proceedings
of the 5th IEEE/ACM International Workshop on Grid Computing, pages 4–10, Washington, DC, USA,
2004. IEEE Computer Society.

[14] M. Garbey, C. Mony, and M. Smaoui. Fluid flow - agent based hybrid model for the simulation of
virtual prairies. Into appear soon in the proceedings of the 20th Parallel Computational Fluid Dynamics
Conference, May 2008.

[15] M. Smaoui, M. Garbey, and C. Mony. Virtual prairie: goinggreen with volunteer computing. In2008
IEEE Asia-Pacific Services Computing Conference, pages 427–434. IEEE Computer Society, December
2008.

[16] C. Mony, M. Garbey, M. Smaoui, and M. Benot. Optimal profiles for clonal plant growth: a modelling
approach. submitted to a journal in ecology, 2009.

[17] D. Levine. Users guide to the pgapack parallel genetic algorithm library, technical report anl-991 8,
1995. Technical report, Argonne National Laboratory, 1995. PGAPACK is available via anonymous ftp
at ftp.mcs.anl.gov or from URL http://info.mcs.anl.gov/pub/pgapack/pgapack.tar.Z.

[18] T. Desell, B. Szymanski, and C. Verla Asynchronous genetic search for scientific modeling on large-
scale heterogeneous environments InIEEE International Symposium on Parallel and Distributed Pro-
cessing, 2008, pages 1–12, Miami, Florida. April 2008.


