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Abstract—The graphical Steiner tree problem is a classical 

combinatorial optimization problem that appears in many 

practically important applications. This paper presents a new 

parallel genetic algorithm for solving the problem. The presented 

algorithm is based on binary encoding, used the Distance 

Network Heuristic for evaluating fitness of individuals and is 

implemented in parallel using global population model. The 

results of experiments on the OR-Library tests are reported to 

show the algorithm’s performance in comparison with other 

metaheuristics for the given problem. The speed-up of the 

parallel implementation is also discussed. 

Keywords: Steiner tree problem, parallel genetic algorithm. 

I. INTRODUCTION

The Graphical Steiner tree Problem (GSP) is a classical 
combinatorial optimization problem which asks for the 
minimum weighted tree spanning some designated vertices of 
an undirected weighted graph. 

Formally, the GSP can be defined as follows. Let G =(V, E)
be an undirected connected graph with a positive cost function 

:c E R+→ on the edges. Given a subset N ⊆ V that is called 
terminal nodes set. A tree which is a subgraph of G is called 
Steiner tree if it spans all the terminal nodes in N. The 
graphical Steiner tree problem is to find the minimum weighted 
Steiner tree. The optimal solution is called the Steiner 
minimum tree (SMT). The nonterminal nodes in a Steiner tree 
are called Steiner nodes. 

Fig. 1 shows an example of Steiner tree in graph: terminal 
nodes and edges of the Steiner tree are highlighted. 

Figure 1. An example of Steiner tree in graph. 

The GSP has many important applications in scientific and 
technology fields, for examples, the routing problem in VLSI 
layout, the designing problem for communication network, the 
phylogeny problem in biology, etc. 

Two special cases of the problem: N = V and 2N =  can be 

solved by polynomial time algorithms. When N = V, the 
optimal solution of GSP is obviously the spanning tree of G
and thus the problem can be solved by polynomial time 

algorithms such as Prim’s algorithm. When 2N = , the 

shortest path between two terminal nodes, which can be found 
by Dijkstra’s algorithm, is exactly the Steiner minimum tree. 
However, the problem in general case, even with unit costs on 
the edges, has been shown to be NP-hard [12], so it  cannot be 
solved in polynomial time, unless P = NP.  

A survey of Steiner tree problem was given by Hwang and 
Richards [10]. Several exact algorithms have been proposed, 
such as dynamic programming technique given by Dreyfuss 
and Wagner [6], Lagrangean relaxation approach presented by 
Beasley [1], brand-and-cut algorithm used by Koch and Martin 
[13]. Duin and Volgenant presented some techniques to reduce 
the size of the graphs for the GSP [7]. 

Another approach for the GSP is using approximation 
algorithms to find near-optimal solution in reasonable time. 
Some heuristic algorithms have been developed, such as 
Shortest Path Heuristic (SPH) given by Takahashi and 
Matsuyama [27], Distance Network Heuristic (DNH) presented 
by Kou, Markowsky and Berman [15], Average Distance 
Heuristic (ADH) proposed by Rayward-Smith and Clare [23] 
and Path-Distance Heuristic (PDH) presented by Winter and 
MacGregor Smith [28]. Mehlhorn modified the DNH to make 
the algorithm faster [20]. Robins and Zelikovsky proposed 
algorithms improving the performance ratio [25, 26]. 

Recently, metaheuristics have been considered better 
methods for finding solutions closer to the optimum. Some 
metaheuristics can be enumerated such as Genetic algorithm 
(GA) [8, 11], GRASP [17], Tabu search [24]. Although these 
metaheuristics are polynomial time algorithms in general, they 
cost much time on large input sets. To deal with this issue, 
some parallel metaheuristic algorithms have been proposed, 
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such as Parallel GRASP [19], Parallel GRASP using hybrid 
local search [18], Parallel GA [5]. 

In this paper, we present a parallel genetic algorithm for the 
graphical Steiner tree problem. Our genetic algorithm is based 
on binary encoding idea [8, 11], uses the Distance Network 
Heuristics [15] as the fitness evaluation function and is 
parallelized by using global population model. The hill-
climbing is applied to improve the quality of obtained solution. 
The hill-climbing routine is also implemented in parallel. To 
our knowledge, just only one parallel GA has been published 
previously [5], and it is based on ideas different from the ideas 
used in the algorithm given here. 

The experiments have been carried out on OR-Library tests 
[2] to validate the efficiency of the algorithm and to compare 
with other metaheuristics in quality of solutions. The run-time 
of the proposed algorithm, when number of processes is 
changed, is also shown to verify its speed-up properties. 

The paper is organized as follows. In the next section, the 
Distance Network Heuristics (DNH) is described. Section 3 
presents the parallel genetic algorithm for the GSP. In section 
4, results of the computational experiments are discussed. In 
section 5, we draw some conclusions and give an outlook to 
future work. 

II. THE DISTANCE NETWORK HEURISTICS FOR GRAPHICAL 

STEINER TREE PROBLEM

Given graph G = (V, E) with c and N as defined in last 
section, the DNH [15] first builds a complete graph G’ on the 
terminal nodes set N with edge cost equal to length of the 
corresponding shortest path in G. Spanning tree M of G’ is 
found, then each edge in M is replaced by the corresponding 
shortest path in G to obtain subgraph G’’. Finally, the 
approximate solution of the GSP is the spanning tree of G’’
after deleting repeatedly all Steiner nodes having degree 1. 

For further presentation, the definition of distance network 
is given. For a given undirected connected graph G, let DG

denote the distance network of G which can be defined as 
follows: 

• DG is a complete graph having the same set of vertices 
as G.

• The cost of each edge connecting two vertices in DG

equals the cost of shortest path in G between these two 
vertices. 

An example of the DNH is shown in Fig. 2. The algorithm 
DNH consists of five steps: 

Input: G = (V, E), positive cost function c, terminal nodes 
set N.

Output: Steiner tree TDNH.

Step 1. Construct the distance network DN with G, N, and c.

Step 2. Find minimum spanning tree M of DN.

Step 3. Replace each edge in M by corresponding shortest 
path in G to get subgraph T.

Step 4. Find minimum spanning tree of T, called TDNH.

Step 5. Delete repeatedly nonterminal nodes of TDNH having 
degree 1. 

Clearly, step 1 in the DNH costs the most time. It requires 
computing shortest paths for each couple vertices in N. This 

step runs in time ( )2
O N V , and is also the time bound for the 

remaining steps. 

Figure 2. (a) Distance network for terminal nodes set in Fig. 1, 

(b) spanning tree of distance network, (c) Steiner tree TDNH.

Beside the DNH, two other well-known polynomial time 
heuristics are Shortest Path Heuristics (SPH) [27] and Average 
Distance Heuristics (ADH) [23]. When compared to these 
heuristics, the solutions of DNH do not have better quality, but 
the DNH is chosen because it is relatively fast and easy to 
implement. 

III. THE PARALLEL GENETIC ALGORITHM FOR GRAPHICAL 

STEINER TREE PROBLEM

In this section, we present a parallel genetic algorithm for 
graphical Steiner tree problem. Genetic algorithm (GA) is a 
class of adaptive search techniques, which gets ideas from 
principles of natural selection and evolution. In this paper, we 
do not describe GA in detail. For an introduction to GA, 
interested readers can refer to [22]. A survey of parallel GA 
was given by Cantú-Paz [3]. 

Basing on simple GA strategy, applying global population 
model, we develop a Parallel Genetic algorithm for graphical 
Steiner tree problem (PGS) using DNH [15] for fitness 
evaluation. According to global population model, fitness 
evaluation is implemented in parallel. The master process first 
divides the whole population into subsets and sends to each 
slave process a corresponding subset. Then, each slave process 
computes fitness for its part. During the fitness evaluation, 
there is no communication among processes. When the 
evaluation finishes, all slave processes return the fitness values 
to the master. The selection, crossover and mutation are 
executed only in the master process. A hill-climbing routine, 
which is also implemented in parallel, is executed after genetic 
algorithm finishes. By using local-search technique to improve 
quality of final solution, we can reduce number of generations 
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in genetic algorithm. Details of the PGS are described in sub-
sections below. 

Figure 3. The parallel genetic algorithm 

A. Genetic encoding and fitness evaluation 

Given an instance of the GSP as defined in section 1, where 
c is the positive cost function, V is the vertices set, N is the 
terminal nodes set. Let V/N be the nonterminal nodes set, 

and | |r V N= . Given a fixed numbering 0, 1 …, r −1 specifies 

the order of nonterminal vertices. A genotype is encoded as a 
string: {(B1, I1), (B2, I2) … (Br-1, Ir-1)}. Each pair in genotype 
has two members, Bi is the bit value and Ii is the index of 

vertex in nonterminal nodes set, {0,1,..., 1}iI r∈ − . This is 

called binary encoding; each bit in the string corresponds to a 
specific nonterminal vertex in the graph. By adding the vertex 
indices, genotype can be decoded independently of the 
ordering of its pairs. For example, two strings below present 
only one genotype, 

{(0, 0), (0, 1), (1, 2), (1, 3), (0, 4)} and 

{(0, 1), (1, 3), (0, 0), (1, 2), (0, 4)}. 

The value of each bit decides whether corresponding vertex 
is selected or not. If the bit value is 1, the vertex is selected. 
Steiner tree will be built from the union of terminal nodes and 
set of selected vertices. Given a genotype s, let Ws be a set of 
all vertices in s having bit value 1. The Steiner tree 
corresponding to s, denoted by Ts, is computed by using the 

DNH on the set sN W∪ , instead of N. Let c(Ts) be the weight 

of Ts, so we define 
1

( )sc T
as the fitness value of genotype s.

Steiner tree in DG, if it exists, has no more than 2N −
Steiner nodes [16]. Hence, it is sufficient to consider only 

genotypes s that min( 2, )sW N r< − . All the other genotypes, 

which have set bits more than min( 2, )N r− , would be passed 

into a filter that clears all redundant set bits. 

B. Selection 

Basing on the fitness of individuals, the selection will 
chooses the individuals in the population that will be used to 
create offspring for the next generation. The purpose of 
selection is to increase the fitter individuals so that the next 
generations even have higher average fitness. Our genetic 
algorithm uses linear ranking method, which assigns an 
expected value presenting selection probability to each 
individual. First, each individual in the population is ranked in 
increasing order of fitness. Let Max be the expected value of 
the fittest individual. If P is the population size, then expected 
value for ith individual, denoted by ei, is computed as follows: 

2 (2 2)
1

i

i
e Max Max

P
= − + −

−
 (1) 

Once the expected values have been assigned, the 
Stochastic Universal Selection (SUS) [22] is used to select 
individuals. 

C. Crossover 

Figure 4. One cut-point crossover 

After the selection, the crossover is executed to create new 
offspring. Two parent individuals are chosen randomly from 
selected individuals and are recombined with a probability pc.

A uniformly distributed random number k is generated, if k ≤
pc, two parent individuals undergo recombination to create two 
offspring. Otherwise, two offspring are simply the copies of 
their parents. The algorithm applies one cut-point crossover in 
which a cut-point is randomly selected in the genotype. Then 
two parts after cut-point of parents are exchanged to form two 
offspring. 

D. Mutation 

Figure 5. Bit-flip mutation (left) and inversion (right) 

While the crossover forms hopefully better individuals, 
mutation adds diversity to the population and enlarges search 
space. In the algorithm, only two types of mutation: bit-flip 
mutation and inversion are applied. In bitwise mutation, each 
bit value in a genotype is changed with a certain probability pm.
After that, inversion works by choosing two points in the 
genotype and reversing the order of the bits between them with 
probability pv.

The PGS starts with randomly generated population, and 
uses number of generations as termination condition. For the 
parallel implementation, the termination condition is broadcast 

Init population 

Termination 

condition 

Evaluate fitness (in parallel) 

Execute genetic operators: 

• Selection 

• Crossover 

• Mutation 

Execute hill-climbing for the 

GA best solution (in parallel) 

Evaluate fitness (in parallel) 

Return the best solution 
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to all processes before the PGS is executed. The parallel fitness 
evaluation algorithm can be written in pseudo-code as follows: 

Parallel fitness evaluation 

//The master process 

1. Divide the population in number of sub-sets which equals to number 
of processes, 

2. Send to each process one corresponding subset called sub-
population, 
3. Get fitness values from slave processes. 
4. END. //of fitness evaluation

//The slave process 

1. If stopping condition is true, 

2.  Terminate, 
3. Else 
4. Receive corresponding sub-population from the master process, 

5. Compute fitness values of the sub-population received, 
6. Send fitness values to the master process 
7. Go to 1, 

8. END. 

After the GA finishes, a hill-climbing routine runs to 
improve the solution founded by GA. To reduce run-time the 
hill-climbing is also implemented in parallel as follows. Let p
be the number of processes which are numbered from 0 

through p−1, and r be the length of genotype. Each genotype 
has r neighbors by flip systematically each bit, one at a time. 

Hence, each process computes fitness for
r

p
neighbors. The 

ith process flips bits from 
r

i
p

through ( 1) 1
r

i
p

+ − to get its 

own neighbors; the last process flips bits from ( 1)
r

p
p

− to 

end. Pseudo-code for the parallel hill-climbing is given below: 

Parallel hill-climbing 

Input: the current_top which is the best solution founded by the PGS. 

//The master process 

01. Broadcast the current top to all processes, 

02. Compute fitness values for corresponding genotypes to the process, 
03. Get the best genotype found over all processes, called the 
new_best, 

04. If the new_best is better than the current_top then 
05. current_top = new_best, 
06. Go to 01, 

07. Else 
08. Terminate all slave processes, 
09. Return the current top. 

10. END. 

//The slave process 

01. Get the current_top, 

02. Compute fitness values for corresponding genotypes to the process, 
03. Send the best genotype found to the master process, 
04. Go to 01, 
05. END. //Terminated by the master 

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on all 78 graphs on 
four classes B, C, D, E of OR-Library [2] and the best founded 
solutions are compared with the optimal solutions. The test sets 
of OR-Library are chosen because they were solved exactly to 
find the optimal solutions. In addition, these test sets are also 

used to evaluate the performance of other algorithms for the 
graphical Steiner tree problem. Some important characteristics 
of these test sets are given in Tab I. Then, performance of the 
algorithm has also been compared to other metaheuristics. Last, 
the speed-up of parallel implementation has been discovered 
with the number of used processes varying from 2 to 10. 

TABLE I. SIZE OF GRAPHS IN OR-LIBRARY.

 Class B Class C Class D Class E 

|V| 50-100 500 1000 2500 

|E| 63-200 625-12500 1250-25000 3125-62500 

|N| 9-50 5-250 5-500 5-1250 

The following parameters of genetic operators of algorithm 
are fixed for all test problems: 

• Linear ranking selection using SUS with expected 
value for the best individual Max = 2. 

• One cut-point crossover with probability pc = 0.9. 

• Bitwise mutation with probability pm = 0.001. 

• Inversion with probability pv = 0.15. 

The PGS executed 10 times for each problem on classes B 
and C, 5 for times class D, and 2 times for class E. Size of 
population and number of generations are changed depending 
on each class. These parameters are given in Tab. II. 

TABLE II. POPULATION SIZE AND NUMBER OF GENERATIONS FOR EACH

CLASS OF THE OR-LIBRARY.

 Class B Class C Class D Class E 

Population size 40 100 150 250 

No. of generations 50 100 200 300 

No. of runs 10 10 5 2 

Our algorithm is implemented on the local network with 9 
computers having the same system configuration: Intel 
Pentium IV 3.06GHz, 480MB of RAM, 100Mbps Ethernet 
card, Windows XP Professional SP2. Computers are connected 
by a 2Gbps Gigabit Ethernet switch. The parallel program has 
been implemented using MPI [21] environment, which is 
established by installing DeinoMPI [4] on all computers for 
communication interface among processes. The PGS is written 
in C++ language using programming environment Microsoft 
Visual C++ 6.0. 

A. Performance of the algorithm 

First, the PGS is tested on all graphs of the OR-Library [2]. 
For each test graph, after the PGS is executed in determined 
times, the best, average and the worst results over all 
executions are recorded. All these results are listed in the end 
of the paper, from Tab. V to VIII. In each table, the Opt, Best,
Avrg, Worst indicate the optimal solutions, the best, average 
and the worst results, respectively. The relative error in 
percentage of the best result in comparison with the optimal 
solution, denoted by Best∆ , is computed as in (2). The relative 
error of the average results, Avrg, is similarly computed. 

100%
Best Opt

Best
Opt

−∆ = ×  (2) 
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On the classes B and C, the PGS finds the optimal solutions 
for all tests. On 28 over 38 graphs on classes B and C, the PGS 
finds the optimal solution in all 10 executions. The relative 
errors of average results are less than 1.9%. On class D, the 
PGS finds optimal solution for 17 graphs, and in addition, for 
10 of them the optimal solution is found in all executions. For 
class D, relative errors of average results are less than 1.7%, 
and the maximum relative error of best result is 0.9%. On class 
E, the PGS finds optimum for 13 over 20 graphs. For 7 
remaining graphs on class E, relative errors of best results are 
no more than 1.42% and the errors of average results are no 
more than 1.7% with respect to optimal solution. Thus for all 
78 graphs in OR-Library test set, the PGS finds the optimal 
solution for 68 graphs, relative errors of the best and average 
results are less than 1.5% and 1.9%, respectively. 

TABLE III. PERFORMANCE COMPARISON OF THE PGS WITH OTHER 

METAHEURISTICS.

 =0 < 0.05 < 0.1 < 0.5 < 1 

PGS 50 51 53 57 59 

GRASP 49 51 51 55 56 

EGA 48 49 49 53 56 

PGRASP 46 47 49 53 56 

Tabu 33 35 38 46 49 
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Figure 6. Performance comparison of the PGS with other metaheuristics. 

Quality of solutions obtained by our PGS on classes C, D 
and E is also compared with other metaheuristics: Esbensen’s 
GA with graph reduction (EGA) [8], GRASP [17], Parallel 
GRASP (PGRASP) [19], Tabu search [24]. For each problem, 
the best results of the PGS and other metaheuristics are 
recorded. The experimental results of these metaheuristics are 
recorded from mentioned papers. Then, the ratio error for each 
result is computed similarly to the Best.

Performance of algorithms is evaluated by comparing 
number of problems which have the best results with ratio 
errors less than a predefined value. 5 determined values of ratio 
error are chosen, from 0 through 1%. Only problems in classes 
C, D and E are used because all metaheuristics and our PGS 
find the optimal solution for all 18 graphs on class B. The 
comparison is shown in Tab. III and Fig. 6. According to Tab. 

III, the PGS has high performance in comparison to other 
metaheuristics. There are 50 over 60 graphs in which the PGS 
finds optimal solution. On 57 cases, the PGS finds the best 
result with ratio error less than 0.5%. There is only one case 
that ratio error is more than 1%. The statistic numbers of the 
PGS is higher than other metaheuristics in the test. Hence, the 
PGS could be considered a highly competitive solution for 
graphical Steiner tree problems. 

B. Speed-up of the parallel implementation 

The speed-up of the PGS is evaluated by comparing run-
time when number of processes is changed. Graphs used for 
the experiment are on classes C and D. Number of processes is 
changed from 2 through 10; each process runs on a computer. 
However, when number of processes is 10, there is a computer 
running two processes, one of which is the master. 

TABLE IV. AVERAGE RUN-TIME, RUN-TIME REDUCTION AND AVERAGE 

SPEED-UP.

Class C Class D 

No. 

of P 

Avrg 

run-time 

(s) 

Reduc-

tion 

Speed-

up 

Avrg 

run-time 

(s) 

Reduc-

tion 

Speed-

up 

2 196.2 - 1 477 - 1 

3 107.2 89.00 1.86 237.5 239.5 2.01 

4 72.2 35.00 2.37 174.88 62.62 2.73 

5 55.8 16.40 3.55 134.5 30.38 3.55 

6 46.88 8.92 4.29 116.5 18 4.09 

7 41.1 5.78 4.69 99.38 17.12 4.80 

8 38.2 2.90 5.58 86.88 12.5 5.49 

9 34.4 3.80 5.94 82.38 4.5 5.79 

10 32.7 1.70 6.61 76.5 5.88 6.24 

Tab. IV lists experimental results for problems on classes C 
and D. On class C, just problems from C16 through C20 are 
used for the test. On class D, only such problems: D9, D14, 
D18, D19 are chosen. Due to time limitation of experiment, we 
did not test all problems in OR-Library. Avrg-run-time is the 
average time of all executions on all determined problems at a 
specific number of processes. Each value in Reduction column 
is the difference of two adjacent Avrg-run-time rows, 
presenting the reduction of run-time whenever one process is 
added. Speed-up gained at a specific number of processes is 
computed as ratio of run-time when using two processes to run-
time when using that number of processes. In the PGS, the 
master process does not take part in fitness evaluation, so there 
must be at least 2 processes when the PGS runs. 

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9 10

No. of processes

S
p

e
e
d

-u
p

Figure 7. Average speed-up using up to 10 processes for classes C and D. 
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Fig. 7 shows the speed-up for the set of problems on classes 
C and D. According to the experiment, speed-up is gained 
when using parallel implementation. However, the run-time 
reduction decreases when we increases number of processes. 
As data in Tab. III, when number of processes increases from 2 
to 3, run-time reduces nearly a half, but from 9 to 10 processes, 
run-time reduction is less than 6s. This is due to 
communication-time increases. Having more processes means 
the master has to spend more time on sending sub-populations 
and receiving fitness values. Although fitness-evaluation 
routine is implemented in parallel, send-receive are serial 
routine. This is a disadvantage of global population model 
when being implemented in group of sequential computers. 

V. CONCLUSION

In this work, we present a parallel genetic algorithm 
applying global population model for solving graphical Steiner 
tree problem. According to the results, our algorithm finds the 
optimal solution for 68 over 78 graphs of OR-Library. For 
graphs that the algorithm does not find optimum, relative errors 
of average results do not exceed 1.9%. Small relative errors 
show that the algorithm is highly stable on many different 
classes of graph. Our algorithm also has better performance in 
comparison with other metaheuristics for graphical Steiner tree 
problem. Beside high performance of the algorithm, parallel 
implementation obtains speed-up. Average run-time decreases 
6 times when the number of processes increases from 2 to 10. 
Nevertheless, graphs in OR-Library are relatively sparse; the 
average vertex degree is at most 50. Although this paper has 
been completed, experiments on dense and complete graphs 
have been being implemented by using test problems in class 
MC, X, I80, I160 and I320 in [14]. First experimental results 
are satisfactory; our algorithm find optimum for almost all test 
graphs. 

However, one disadvantage of global population model is 
that the master process has to execute genetic operators for 
whole population and run a send-receive routine with each 
slave process. Hence, run-time in the master rapidly increases 
when population is large or there are many processes. These 
disadvantages make the global population model almost 
impossible to be applied in large computer systems to solve 
graphs having tens of thousands to millions vertices. To deal 
with this issue, our research direction in future is to apply more 
sophisticated parallel models to genetic algorithm. One of such 
models is multi-population GA. This model is also called 
island model parallel GA which uses relatively isolated sub-
populations controlled by the same GA strategy. The 
communication among populations is done by the migration in 
which numbers of individuals are exchanged between each 
couple of sub-populations. By using this model, we hope 
performance of the GA will be improved. 

COMPUTATIONAL RESULTS

This section gives a full report of the experimental results 
for all graphs of OR-Library. There are totally 78 problems, 
which consists of 18 problems on class B and 20 problems on 
each class C, D and E. 

TABLE V. CLASS  B

Problem Opt Best Avrg Worst Best Avrg 

b01 82 82 82 82 0 0 

b02 83 83 83 83 0 0 

b03 138 138 138 138 0 0 

b04 59 59 59 59 0 0 

b05 61 61 61 61 0 0 

b06 122 122 122 122 0 0 

b07 111 111 111 111 0 0 

b08 104 104 104 104 0 0 

b09 220 220 220 220 0 0 

b10 86 86 86 86 0 0 

b11 88 88 88 88 0 0 

b12 174 174 174 174 0 0 

b13 165 165 165 165 0 0 

b14 235 235 235.1 236 0 0.04 

b15 318 318 318 318 0 0 

b16 127 127 127 127 0 0 

b17 131 131 131 131 0 0 

b18 218 218 218 218 0 0 

TABLE VI. CLASS C

Proble

m
Opt Best Avrg Worst Best Avrg 

c01 85 85 85 85 0 0 

c02 144 144 144 144 0 0 

c03 754 754 754 754 0 0 

c04 1079 1079 1080.5 1083 0 0.14 

c05 1579 1579 1579 1579 0 0 

c06 55 55 55 55 0 0 

c07 102 102 102 102 0 0 

c08 509 509 509.8 511 0 0.16 

c09 707 707 707.9 709 0 0.13 

c10 1093 1093 1093.1 1094 0 0.01 

c11 32 32 32 32 0 0 

c12 46 46 46 46 0 0 

c13 258 258 259.4 260 0 0.54 

c14 323 323 323.4 324 0 0.12 

c15 556 556 556 556 0 0 

c16 11 11 11.2 12 0 1.82 

c17 18 18 18 18 0 0 

c18 113 113 114.7 116 0 1.50 

c19 146 146 147.7 149 0 1.16 

c20 267 267 267 267 0 0 

TABLE VII. CLASS D

Problem Opt Best Avrg Worst Best Avrg 

d01 106 106 106 106 0 0 

d02 220 220 220 220 0 0 

d03 1565 1565 1566.6 1569 0 0.10 

d04 1935 1935 1935 1935 0 0 

d05 3250 3250 3250.6 3251 0 0.02 

d06 67 67 67 67 0 0 

d07 103 103 103 103 0 0 

d08 1072 1072 1073 1074 0 0.09 

d09 1448 1448 1449.6 1451 0 0.11 

d10 2110 2110 2110.6 2111 0 0.03 

d11 29 29 29 29 0 0 

d12 42 42 42 42 0 0 

d13 500 500 500.6 501 0 0.12 

d14 667 669 669.4 670 0.30 0.36 

d15 1116 1116 1116.4 1117 0 0.04 

d16 13 13 13 13 0 0 

d17 23 23 23 23 0 0 

d18 223 225 226.8 228 0.90 1.70 

d19 310 312 313 314 0.65 0.97 

d20 537 537 537 537 0 0 
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TABLE VIII. CLASS E

Problem Opt Best Avrg Worst Best Avrg 

e01 111 111 111 111 0 0 

e02 214 214 214 214 0 0 

e03 4013 4015 4018 4021 0.05 0.12 

e04 5101 5101 5102 5103 0 0.02 

e05 8128 8128 8128 8128 0 0 

e06 73 73 73 73 0 0 

e07 145 145 145 145 0 0 

e08 2640 2645 2646.5 2648 0.19 0.25 

e09 3604 3607 3607.5 3608 0.08 0.10 

e10 5600 5600 5600.5 5601 0 0.01 

e11 34 34 34 34 0 0 

e12 67 67 67 67 0 0 

e13 1280 1286 1288.5 1290 0.47 0.66 

e14 1732 1733 1733.5 1734 0.06 0.09 

e15 2784 2784 2784.5 2785 0 0.02 

e16 15 15 15 15 0 0 

e17 25 25 25 25 0 0 

e18 564 572 573.5 575 1.42 1.68 

e19 758 761 761.5 762 0.40 0.46 

e20 1342 1342 1342 1342 0 0 
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