
Solving Graphical Steiner Tree Problem

Using Parallel Genetic Algorithm

Nguyen Viet Huy

huynv-fit@mail.hut.edu.vn

Nguyen Duc Nghia

nghiand@it-hut.edu.vn

Department of Computer Science

Faculty of Information Technology, Hanoi University of Technology

No.1, Dai Co Viet road, Hanoi, Vietnam

Tel: (+84) 4 8696121 – Fax: (+84) 4 8692906

Abstract—The graphical Steiner tree problem is a classical

combinatorial optimization problem that appears in many

practically important applications. This paper presents a new

parallel genetic algorithm for solving the problem. The presented

algorithm is based on binary encoding, used the Distance

Network Heuristic for evaluating fitness of individuals and is

implemented in parallel using global population model. The

results of experiments on the OR-Library tests are reported to

show the algorithm’s performance in comparison with other

metaheuristics for the given problem. The speed-up of the

parallel implementation is also discussed.

Keywords: Steiner tree problem, parallel genetic algorithm.

I. INTRODUCTION

The Graphical Steiner tree Problem (GSP) is a classical
combinatorial optimization problem which asks for the
minimum weighted tree spanning some designated vertices of
an undirected weighted graph.

Formally, the GSP can be defined as follows. Let G =(V, E)
be an undirected connected graph with a positive cost function

:c E R+→ on the edges. Given a subset N ⊆ V that is called
terminal nodes set. A tree which is a subgraph of G is called
Steiner tree if it spans all the terminal nodes in N. The
graphical Steiner tree problem is to find the minimum weighted
Steiner tree. The optimal solution is called the Steiner
minimum tree (SMT). The nonterminal nodes in a Steiner tree
are called Steiner nodes.

Fig. 1 shows an example of Steiner tree in graph: terminal
nodes and edges of the Steiner tree are highlighted.

Figure 1. An example of Steiner tree in graph.

The GSP has many important applications in scientific and
technology fields, for examples, the routing problem in VLSI
layout, the designing problem for communication network, the
phylogeny problem in biology, etc.

Two special cases of the problem: N = V and 2N = can be

solved by polynomial time algorithms. When N = V, the
optimal solution of GSP is obviously the spanning tree of G
and thus the problem can be solved by polynomial time

algorithms such as Prim’s algorithm. When 2N = , the

shortest path between two terminal nodes, which can be found
by Dijkstra’s algorithm, is exactly the Steiner minimum tree.
However, the problem in general case, even with unit costs on
the edges, has been shown to be NP-hard [12], so it cannot be
solved in polynomial time, unless P = NP.

A survey of Steiner tree problem was given by Hwang and
Richards [10]. Several exact algorithms have been proposed,
such as dynamic programming technique given by Dreyfuss
and Wagner [6], Lagrangean relaxation approach presented by
Beasley [1], brand-and-cut algorithm used by Koch and Martin
[13]. Duin and Volgenant presented some techniques to reduce
the size of the graphs for the GSP [7].

Another approach for the GSP is using approximation
algorithms to find near-optimal solution in reasonable time.
Some heuristic algorithms have been developed, such as
Shortest Path Heuristic (SPH) given by Takahashi and
Matsuyama [27], Distance Network Heuristic (DNH) presented
by Kou, Markowsky and Berman [15], Average Distance
Heuristic (ADH) proposed by Rayward-Smith and Clare [23]
and Path-Distance Heuristic (PDH) presented by Winter and
MacGregor Smith [28]. Mehlhorn modified the DNH to make
the algorithm faster [20]. Robins and Zelikovsky proposed
algorithms improving the performance ratio [25, 26].

Recently, metaheuristics have been considered better
methods for finding solutions closer to the optimum. Some
metaheuristics can be enumerated such as Genetic algorithm
(GA) [8, 11], GRASP [17], Tabu search [24]. Although these
metaheuristics are polynomial time algorithms in general, they
cost much time on large input sets. To deal with this issue,
some parallel metaheuristic algorithms have been proposed,

1

2

3

4

5

6

1

4

3

6

2

3
7

6

7

29978-1-4244-2379-8/08/$25.00 (c)2008 IEEE

such as Parallel GRASP [19], Parallel GRASP using hybrid
local search [18], Parallel GA [5].

In this paper, we present a parallel genetic algorithm for the
graphical Steiner tree problem. Our genetic algorithm is based
on binary encoding idea [8, 11], uses the Distance Network
Heuristics [15] as the fitness evaluation function and is
parallelized by using global population model. The hill-
climbing is applied to improve the quality of obtained solution.
The hill-climbing routine is also implemented in parallel. To
our knowledge, just only one parallel GA has been published
previously [5], and it is based on ideas different from the ideas
used in the algorithm given here.

The experiments have been carried out on OR-Library tests
[2] to validate the efficiency of the algorithm and to compare
with other metaheuristics in quality of solutions. The run-time
of the proposed algorithm, when number of processes is
changed, is also shown to verify its speed-up properties.

The paper is organized as follows. In the next section, the
Distance Network Heuristics (DNH) is described. Section 3
presents the parallel genetic algorithm for the GSP. In section
4, results of the computational experiments are discussed. In
section 5, we draw some conclusions and give an outlook to
future work.

II. THE DISTANCE NETWORK HEURISTICS FOR GRAPHICAL

STEINER TREE PROBLEM

Given graph G = (V, E) with c and N as defined in last
section, the DNH [15] first builds a complete graph G’ on the
terminal nodes set N with edge cost equal to length of the
corresponding shortest path in G. Spanning tree M of G’ is
found, then each edge in M is replaced by the corresponding
shortest path in G to obtain subgraph G’’. Finally, the
approximate solution of the GSP is the spanning tree of G’’
after deleting repeatedly all Steiner nodes having degree 1.

For further presentation, the definition of distance network
is given. For a given undirected connected graph G, let DG

denote the distance network of G which can be defined as
follows:

• DG is a complete graph having the same set of vertices
as G.

• The cost of each edge connecting two vertices in DG

equals the cost of shortest path in G between these two
vertices.

An example of the DNH is shown in Fig. 2. The algorithm
DNH consists of five steps:

Input: G = (V, E), positive cost function c, terminal nodes
set N.

Output: Steiner tree TDNH.

Step 1. Construct the distance network DN with G, N, and c.

Step 2. Find minimum spanning tree M of DN.

Step 3. Replace each edge in M by corresponding shortest
path in G to get subgraph T.

Step 4. Find minimum spanning tree of T, called TDNH.

Step 5. Delete repeatedly nonterminal nodes of TDNH having
degree 1.

Clearly, step 1 in the DNH costs the most time. It requires
computing shortest paths for each couple vertices in N. This

step runs in time ()2
O N V , and is also the time bound for the

remaining steps.

Figure 2. (a) Distance network for terminal nodes set in Fig. 1,

(b) spanning tree of distance network, (c) Steiner tree TDNH.

Beside the DNH, two other well-known polynomial time
heuristics are Shortest Path Heuristics (SPH) [27] and Average
Distance Heuristics (ADH) [23]. When compared to these
heuristics, the solutions of DNH do not have better quality, but
the DNH is chosen because it is relatively fast and easy to
implement.

III. THE PARALLEL GENETIC ALGORITHM FOR GRAPHICAL

STEINER TREE PROBLEM

In this section, we present a parallel genetic algorithm for
graphical Steiner tree problem. Genetic algorithm (GA) is a
class of adaptive search techniques, which gets ideas from
principles of natural selection and evolution. In this paper, we
do not describe GA in detail. For an introduction to GA,
interested readers can refer to [22]. A survey of parallel GA
was given by Cantú-Paz [3].

Basing on simple GA strategy, applying global population
model, we develop a Parallel Genetic algorithm for graphical
Steiner tree problem (PGS) using DNH [15] for fitness
evaluation. According to global population model, fitness
evaluation is implemented in parallel. The master process first
divides the whole population into subsets and sends to each
slave process a corresponding subset. Then, each slave process
computes fitness for its part. During the fitness evaluation,
there is no communication among processes. When the
evaluation finishes, all slave processes return the fitness values
to the master. The selection, crossover and mutation are
executed only in the master process. A hill-climbing routine,
which is also implemented in parallel, is executed after genetic
algorithm finishes. By using local-search technique to improve
quality of final solution, we can reduce number of generations

61

4

5

6

7

1

4

6

5

6

1

4

6

3 5
1

3

2

3

(a) (b)

(c)

30978-1-4244-2379-8/08/$25.00 (c)2008 IEEE

in genetic algorithm. Details of the PGS are described in sub-
sections below.

Figure 3. The parallel genetic algorithm

A. Genetic encoding and fitness evaluation

Given an instance of the GSP as defined in section 1, where
c is the positive cost function, V is the vertices set, N is the
terminal nodes set. Let V/N be the nonterminal nodes set,

and | |r V N= . Given a fixed numbering 0, 1 …, r −1 specifies

the order of nonterminal vertices. A genotype is encoded as a
string: {(B1, I1), (B2, I2) … (Br-1, Ir-1)}. Each pair in genotype
has two members, Bi is the bit value and Ii is the index of

vertex in nonterminal nodes set, {0,1,..., 1}iI r∈ − . This is

called binary encoding; each bit in the string corresponds to a
specific nonterminal vertex in the graph. By adding the vertex
indices, genotype can be decoded independently of the
ordering of its pairs. For example, two strings below present
only one genotype,

{(0, 0), (0, 1), (1, 2), (1, 3), (0, 4)} and

{(0, 1), (1, 3), (0, 0), (1, 2), (0, 4)}.

The value of each bit decides whether corresponding vertex
is selected or not. If the bit value is 1, the vertex is selected.
Steiner tree will be built from the union of terminal nodes and
set of selected vertices. Given a genotype s, let Ws be a set of
all vertices in s having bit value 1. The Steiner tree
corresponding to s, denoted by Ts, is computed by using the

DNH on the set sN W∪ , instead of N. Let c(Ts) be the weight

of Ts, so we define
1

()sc T
as the fitness value of genotype s.

Steiner tree in DG, if it exists, has no more than 2N −
Steiner nodes [16]. Hence, it is sufficient to consider only

genotypes s that min(2,)sW N r< − . All the other genotypes,

which have set bits more than min(2,)N r− , would be passed

into a filter that clears all redundant set bits.

B. Selection

Basing on the fitness of individuals, the selection will
chooses the individuals in the population that will be used to
create offspring for the next generation. The purpose of
selection is to increase the fitter individuals so that the next
generations even have higher average fitness. Our genetic
algorithm uses linear ranking method, which assigns an
expected value presenting selection probability to each
individual. First, each individual in the population is ranked in
increasing order of fitness. Let Max be the expected value of
the fittest individual. If P is the population size, then expected
value for ith individual, denoted by ei, is computed as follows:

2 (2 2)
1

i

i
e Max Max

P
= − + −

−
 (1)

Once the expected values have been assigned, the
Stochastic Universal Selection (SUS) [22] is used to select
individuals.

C. Crossover

Figure 4. One cut-point crossover

After the selection, the crossover is executed to create new
offspring. Two parent individuals are chosen randomly from
selected individuals and are recombined with a probability pc.

A uniformly distributed random number k is generated, if k ≤
pc, two parent individuals undergo recombination to create two
offspring. Otherwise, two offspring are simply the copies of
their parents. The algorithm applies one cut-point crossover in
which a cut-point is randomly selected in the genotype. Then
two parts after cut-point of parents are exchanged to form two
offspring.

D. Mutation

Figure 5. Bit-flip mutation (left) and inversion (right)

While the crossover forms hopefully better individuals,
mutation adds diversity to the population and enlarges search
space. In the algorithm, only two types of mutation: bit-flip
mutation and inversion are applied. In bitwise mutation, each
bit value in a genotype is changed with a certain probability pm.
After that, inversion works by choosing two points in the
genotype and reversing the order of the bits between them with
probability pv.

The PGS starts with randomly generated population, and
uses number of generations as termination condition. For the
parallel implementation, the termination condition is broadcast

Init population

Termination

condition

Evaluate fitness (in parallel)

Execute genetic operators:

• Selection

• Crossover

• Mutation

Execute hill-climbing for the

GA best solution (in parallel)

Evaluate fitness (in parallel)

Return the best solution

F

T

1 2 3

3 2 1

A

A’

A

A’

A

B

A’

B’

31978-1-4244-2379-8/08/$25.00 (c)2008 IEEE

to all processes before the PGS is executed. The parallel fitness
evaluation algorithm can be written in pseudo-code as follows:

Parallel fitness evaluation

//The master process

1. Divide the population in number of sub-sets which equals to number
of processes,

2. Send to each process one corresponding subset called sub-
population,
3. Get fitness values from slave processes.
4. END. //of fitness evaluation

//The slave process

1. If stopping condition is true,

2. Terminate,
3. Else
4. Receive corresponding sub-population from the master process,

5. Compute fitness values of the sub-population received,
6. Send fitness values to the master process
7. Go to 1,

8. END.

After the GA finishes, a hill-climbing routine runs to
improve the solution founded by GA. To reduce run-time the
hill-climbing is also implemented in parallel as follows. Let p
be the number of processes which are numbered from 0

through p−1, and r be the length of genotype. Each genotype
has r neighbors by flip systematically each bit, one at a time.

Hence, each process computes fitness for
r

p
neighbors. The

ith process flips bits from
r

i
p

through (1) 1
r

i
p

+ − to get its

own neighbors; the last process flips bits from (1)
r

p
p

− to

end. Pseudo-code for the parallel hill-climbing is given below:

Parallel hill-climbing

Input: the current_top which is the best solution founded by the PGS.

//The master process

01. Broadcast the current top to all processes,

02. Compute fitness values for corresponding genotypes to the process,
03. Get the best genotype found over all processes, called the
new_best,

04. If the new_best is better than the current_top then
05. current_top = new_best,
06. Go to 01,

07. Else
08. Terminate all slave processes,
09. Return the current top.

10. END.

//The slave process

01. Get the current_top,

02. Compute fitness values for corresponding genotypes to the process,
03. Send the best genotype found to the master process,
04. Go to 01,
05. END. //Terminated by the master

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on all 78 graphs on
four classes B, C, D, E of OR-Library [2] and the best founded
solutions are compared with the optimal solutions. The test sets
of OR-Library are chosen because they were solved exactly to
find the optimal solutions. In addition, these test sets are also

used to evaluate the performance of other algorithms for the
graphical Steiner tree problem. Some important characteristics
of these test sets are given in Tab I. Then, performance of the
algorithm has also been compared to other metaheuristics. Last,
the speed-up of parallel implementation has been discovered
with the number of used processes varying from 2 to 10.

TABLE I. SIZE OF GRAPHS IN OR-LIBRARY.

 Class B Class C Class D Class E

|V| 50-100 500 1000 2500

|E| 63-200 625-12500 1250-25000 3125-62500

|N| 9-50 5-250 5-500 5-1250

The following parameters of genetic operators of algorithm
are fixed for all test problems:

• Linear ranking selection using SUS with expected
value for the best individual Max = 2.

• One cut-point crossover with probability pc = 0.9.

• Bitwise mutation with probability pm = 0.001.

• Inversion with probability pv = 0.15.

The PGS executed 10 times for each problem on classes B
and C, 5 for times class D, and 2 times for class E. Size of
population and number of generations are changed depending
on each class. These parameters are given in Tab. II.

TABLE II. POPULATION SIZE AND NUMBER OF GENERATIONS FOR EACH

CLASS OF THE OR-LIBRARY.

 Class B Class C Class D Class E

Population size 40 100 150 250

No. of generations 50 100 200 300

No. of runs 10 10 5 2

Our algorithm is implemented on the local network with 9
computers having the same system configuration: Intel
Pentium IV 3.06GHz, 480MB of RAM, 100Mbps Ethernet
card, Windows XP Professional SP2. Computers are connected
by a 2Gbps Gigabit Ethernet switch. The parallel program has
been implemented using MPI [21] environment, which is
established by installing DeinoMPI [4] on all computers for
communication interface among processes. The PGS is written
in C++ language using programming environment Microsoft
Visual C++ 6.0.

A. Performance of the algorithm

First, the PGS is tested on all graphs of the OR-Library [2].
For each test graph, after the PGS is executed in determined
times, the best, average and the worst results over all
executions are recorded. All these results are listed in the end
of the paper, from Tab. V to VIII. In each table, the Opt, Best,
Avrg, Worst indicate the optimal solutions, the best, average
and the worst results, respectively. The relative error in
percentage of the best result in comparison with the optimal
solution, denoted by Best∆ , is computed as in (2). The relative
error of the average results, Avrg, is similarly computed.

100%
Best Opt

Best
Opt

−∆ = × (2)

32978-1-4244-2379-8/08/$25.00 (c)2008 IEEE

On the classes B and C, the PGS finds the optimal solutions
for all tests. On 28 over 38 graphs on classes B and C, the PGS
finds the optimal solution in all 10 executions. The relative
errors of average results are less than 1.9%. On class D, the
PGS finds optimal solution for 17 graphs, and in addition, for
10 of them the optimal solution is found in all executions. For
class D, relative errors of average results are less than 1.7%,
and the maximum relative error of best result is 0.9%. On class
E, the PGS finds optimum for 13 over 20 graphs. For 7
remaining graphs on class E, relative errors of best results are
no more than 1.42% and the errors of average results are no
more than 1.7% with respect to optimal solution. Thus for all
78 graphs in OR-Library test set, the PGS finds the optimal
solution for 68 graphs, relative errors of the best and average
results are less than 1.5% and 1.9%, respectively.

TABLE III. PERFORMANCE COMPARISON OF THE PGS WITH OTHER

METAHEURISTICS.

 =0 < 0.05 < 0.1 < 0.5 < 1

PGS 50 51 53 57 59

GRASP 49 51 51 55 56

EGA 48 49 49 53 56

PGRASP 46 47 49 53 56

Tabu 33 35 38 46 49

30

40

50

60

=0 < 0.05 < 0.1 < 0.5 < 1

Ratio error (%)

N
o
.

o
f

G
ra

p
h

s

PGS GRASP EGA PGRASP Tabu

Figure 6. Performance comparison of the PGS with other metaheuristics.

Quality of solutions obtained by our PGS on classes C, D
and E is also compared with other metaheuristics: Esbensen’s
GA with graph reduction (EGA) [8], GRASP [17], Parallel
GRASP (PGRASP) [19], Tabu search [24]. For each problem,
the best results of the PGS and other metaheuristics are
recorded. The experimental results of these metaheuristics are
recorded from mentioned papers. Then, the ratio error for each
result is computed similarly to the Best.

Performance of algorithms is evaluated by comparing
number of problems which have the best results with ratio
errors less than a predefined value. 5 determined values of ratio
error are chosen, from 0 through 1%. Only problems in classes
C, D and E are used because all metaheuristics and our PGS
find the optimal solution for all 18 graphs on class B. The
comparison is shown in Tab. III and Fig. 6. According to Tab.

III, the PGS has high performance in comparison to other
metaheuristics. There are 50 over 60 graphs in which the PGS
finds optimal solution. On 57 cases, the PGS finds the best
result with ratio error less than 0.5%. There is only one case
that ratio error is more than 1%. The statistic numbers of the
PGS is higher than other metaheuristics in the test. Hence, the
PGS could be considered a highly competitive solution for
graphical Steiner tree problems.

B. Speed-up of the parallel implementation

The speed-up of the PGS is evaluated by comparing run-
time when number of processes is changed. Graphs used for
the experiment are on classes C and D. Number of processes is
changed from 2 through 10; each process runs on a computer.
However, when number of processes is 10, there is a computer
running two processes, one of which is the master.

TABLE IV. AVERAGE RUN-TIME, RUN-TIME REDUCTION AND AVERAGE

SPEED-UP.

Class C Class D

No.

of P

Avrg

run-time

(s)

Reduc-

tion

Speed-

up

Avrg

run-time

(s)

Reduc-

tion

Speed-

up

2 196.2 - 1 477 - 1

3 107.2 89.00 1.86 237.5 239.5 2.01

4 72.2 35.00 2.37 174.88 62.62 2.73

5 55.8 16.40 3.55 134.5 30.38 3.55

6 46.88 8.92 4.29 116.5 18 4.09

7 41.1 5.78 4.69 99.38 17.12 4.80

8 38.2 2.90 5.58 86.88 12.5 5.49

9 34.4 3.80 5.94 82.38 4.5 5.79

10 32.7 1.70 6.61 76.5 5.88 6.24

Tab. IV lists experimental results for problems on classes C
and D. On class C, just problems from C16 through C20 are
used for the test. On class D, only such problems: D9, D14,
D18, D19 are chosen. Due to time limitation of experiment, we
did not test all problems in OR-Library. Avrg-run-time is the
average time of all executions on all determined problems at a
specific number of processes. Each value in Reduction column
is the difference of two adjacent Avrg-run-time rows,
presenting the reduction of run-time whenever one process is
added. Speed-up gained at a specific number of processes is
computed as ratio of run-time when using two processes to run-
time when using that number of processes. In the PGS, the
master process does not take part in fitness evaluation, so there
must be at least 2 processes when the PGS runs.

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9 10

No. of processes

S
p

e
e
d

-u
p

Figure 7. Average speed-up using up to 10 processes for classes C and D.

33978-1-4244-2379-8/08/$25.00 (c)2008 IEEE

Fig. 7 shows the speed-up for the set of problems on classes
C and D. According to the experiment, speed-up is gained
when using parallel implementation. However, the run-time
reduction decreases when we increases number of processes.
As data in Tab. III, when number of processes increases from 2
to 3, run-time reduces nearly a half, but from 9 to 10 processes,
run-time reduction is less than 6s. This is due to
communication-time increases. Having more processes means
the master has to spend more time on sending sub-populations
and receiving fitness values. Although fitness-evaluation
routine is implemented in parallel, send-receive are serial
routine. This is a disadvantage of global population model
when being implemented in group of sequential computers.

V. CONCLUSION

In this work, we present a parallel genetic algorithm
applying global population model for solving graphical Steiner
tree problem. According to the results, our algorithm finds the
optimal solution for 68 over 78 graphs of OR-Library. For
graphs that the algorithm does not find optimum, relative errors
of average results do not exceed 1.9%. Small relative errors
show that the algorithm is highly stable on many different
classes of graph. Our algorithm also has better performance in
comparison with other metaheuristics for graphical Steiner tree
problem. Beside high performance of the algorithm, parallel
implementation obtains speed-up. Average run-time decreases
6 times when the number of processes increases from 2 to 10.
Nevertheless, graphs in OR-Library are relatively sparse; the
average vertex degree is at most 50. Although this paper has
been completed, experiments on dense and complete graphs
have been being implemented by using test problems in class
MC, X, I80, I160 and I320 in [14]. First experimental results
are satisfactory; our algorithm find optimum for almost all test
graphs.

However, one disadvantage of global population model is
that the master process has to execute genetic operators for
whole population and run a send-receive routine with each
slave process. Hence, run-time in the master rapidly increases
when population is large or there are many processes. These
disadvantages make the global population model almost
impossible to be applied in large computer systems to solve
graphs having tens of thousands to millions vertices. To deal
with this issue, our research direction in future is to apply more
sophisticated parallel models to genetic algorithm. One of such
models is multi-population GA. This model is also called
island model parallel GA which uses relatively isolated sub-
populations controlled by the same GA strategy. The
communication among populations is done by the migration in
which numbers of individuals are exchanged between each
couple of sub-populations. By using this model, we hope
performance of the GA will be improved.

COMPUTATIONAL RESULTS

This section gives a full report of the experimental results
for all graphs of OR-Library. There are totally 78 problems,
which consists of 18 problems on class B and 20 problems on
each class C, D and E.

TABLE V. CLASS B

Problem Opt Best Avrg Worst Best Avrg

b01 82 82 82 82 0 0

b02 83 83 83 83 0 0

b03 138 138 138 138 0 0

b04 59 59 59 59 0 0

b05 61 61 61 61 0 0

b06 122 122 122 122 0 0

b07 111 111 111 111 0 0

b08 104 104 104 104 0 0

b09 220 220 220 220 0 0

b10 86 86 86 86 0 0

b11 88 88 88 88 0 0

b12 174 174 174 174 0 0

b13 165 165 165 165 0 0

b14 235 235 235.1 236 0 0.04

b15 318 318 318 318 0 0

b16 127 127 127 127 0 0

b17 131 131 131 131 0 0

b18 218 218 218 218 0 0

TABLE VI. CLASS C

Proble

m
Opt Best Avrg Worst Best Avrg

c01 85 85 85 85 0 0

c02 144 144 144 144 0 0

c03 754 754 754 754 0 0

c04 1079 1079 1080.5 1083 0 0.14

c05 1579 1579 1579 1579 0 0

c06 55 55 55 55 0 0

c07 102 102 102 102 0 0

c08 509 509 509.8 511 0 0.16

c09 707 707 707.9 709 0 0.13

c10 1093 1093 1093.1 1094 0 0.01

c11 32 32 32 32 0 0

c12 46 46 46 46 0 0

c13 258 258 259.4 260 0 0.54

c14 323 323 323.4 324 0 0.12

c15 556 556 556 556 0 0

c16 11 11 11.2 12 0 1.82

c17 18 18 18 18 0 0

c18 113 113 114.7 116 0 1.50

c19 146 146 147.7 149 0 1.16

c20 267 267 267 267 0 0

TABLE VII. CLASS D

Problem Opt Best Avrg Worst Best Avrg

d01 106 106 106 106 0 0

d02 220 220 220 220 0 0

d03 1565 1565 1566.6 1569 0 0.10

d04 1935 1935 1935 1935 0 0

d05 3250 3250 3250.6 3251 0 0.02

d06 67 67 67 67 0 0

d07 103 103 103 103 0 0

d08 1072 1072 1073 1074 0 0.09

d09 1448 1448 1449.6 1451 0 0.11

d10 2110 2110 2110.6 2111 0 0.03

d11 29 29 29 29 0 0

d12 42 42 42 42 0 0

d13 500 500 500.6 501 0 0.12

d14 667 669 669.4 670 0.30 0.36

d15 1116 1116 1116.4 1117 0 0.04

d16 13 13 13 13 0 0

d17 23 23 23 23 0 0

d18 223 225 226.8 228 0.90 1.70

d19 310 312 313 314 0.65 0.97

d20 537 537 537 537 0 0

34978-1-4244-2379-8/08/$25.00 (c)2008 IEEE

TABLE VIII. CLASS E

Problem Opt Best Avrg Worst Best Avrg

e01 111 111 111 111 0 0

e02 214 214 214 214 0 0

e03 4013 4015 4018 4021 0.05 0.12

e04 5101 5101 5102 5103 0 0.02

e05 8128 8128 8128 8128 0 0

e06 73 73 73 73 0 0

e07 145 145 145 145 0 0

e08 2640 2645 2646.5 2648 0.19 0.25

e09 3604 3607 3607.5 3608 0.08 0.10

e10 5600 5600 5600.5 5601 0 0.01

e11 34 34 34 34 0 0

e12 67 67 67 67 0 0

e13 1280 1286 1288.5 1290 0.47 0.66

e14 1732 1733 1733.5 1734 0.06 0.09

e15 2784 2784 2784.5 2785 0 0.02

e16 15 15 15 15 0 0

e17 25 25 25 25 0 0

e18 564 572 573.5 575 1.42 1.68

e19 758 761 761.5 762 0.40 0.46

e20 1342 1342 1342 1342 0 0

REFERENCES

[1] J. E. Beasley, An SST-Based Algorithm for the Steiner Problem in

Graphs, Networks, Vol.19, 1-16, l989.

[2] J. E. Beasley, OR-Library: distributing test problems by electronic mail,
URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html

[3] E. Cantú-Paz, A Survey of Parallel Genetic Algorithms, Technical

Report, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, 1997.

[4] DeinoMPI, Deino Software © 2006, URL http://mpi.deino.net

[5] G. Di Fatta, G. Lo Presti, G. Lo Re, A Parallel Genetic Algorithm for the
Steiner Problem in Networks, 15th IASTED International Conference on

Parallel and Distributed Computing and Systems (PDCS 2003), Marina
del Rey, CA, USA, 569-573, 2003.

[6] S. E. Dreyfuss, R. A. Wagner, The Steiner Problem in Graphs,

Networks, Vol.1, 195-207, 1971.

[7] C. W. Duin, A. Volgenant, Reduction Tests for the Steiner Problem in
Graphs, Networks, Vol.19, 549-567, 1989.

[8] H. Esbensen, Computing Near-Optimal Solutions to the Steiner Problem

in a Graph Using a Genetic Algorithm, Networks, Vol.26, 173-185,
1995.

[9] P. J. B. Hancock, An Empirical Comparison of Selection Methods in

Evolutionary Algorithms, Lecture Notes in Computer Science, Springer-
Verlag, 80-94, 1994.

[10] F. K. Hwang, Dana S. Richards, Steiner Tree Problems, Networks,
Vol.22, 55-89, 1992.

[11] A. Kapsalis, V. J. Rayward-Smith, G. D. Smith, Solving the Graphical

Steiner Tree Problem Using Genetic Algorithms, Journal of the
Operational Research Society, Vol.44, No.4, 397-406, 1993.

[12] R. M. Karp, Reducibility among Combinatorial Problems, Complexity
of Computer Computations, (R. E. Miller, J. W. Thatcher Eds.) Plenum

Press, New York, 85-103, 1972.

[13] T. Koch, A. Martin, Solving Steiner Tree Problems in Graphs to
Optimality, Networks, Vol.32, 207-232, 1998.

[14] T. Koch, A. Martin, S. Voss, SteinLib: An Updated Library on Steiner

Tree Problems in Graphs, Konrad-Zuse-Zentrum für Information-
stechnik Berlin, 2000, URL http://elib.zib.de/steinlib/steinlib.php

[15] L. Kou, G. Markowsky, L. Berman, A Fast Algorithm for Steiner Trees,

Acta Informatica, Vol.15, 141-145, 1981.

[16] E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, 1976.

[17] S. L. Martins, P. Pardalos, M.G. Resende, and C.C. Ribeiro, Greedy

Randomized Adaptive Search Procedures for the Steiner Problem in
Graphs, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, Vol.43, 133-146, 1999.

[18] S. L. Martins, M. G. C. Resende, C.C. Ribeiro, and P.M. Pardalos. A

Parallel GRASP for the Steiner Tree Problem in Graphs Using a Hybrid
Local Search Strategy, Journal of Global Optimization, 267-283, 2000.

[19] S. L. Martins, C. C. Ribeiro, M. C. Souza, A Parallel GRASP for the

Steiner Problem in Graphs, Lecture Notes in Computer Science,
Springer-Verlag, Vol.1457, 310-331, 1998.

[20] K. Mehlhorn, A Faster Approximation Algorithm for the Steiner

Problem in Graphs, Information Processing Letters archive, Vol.27, 125-
128, 1988.

[21] MPI: A Message-Passing Interface Standard (Version 1.1), Message

Passing Interface Forum, Technical report, University of Tennessee,
1995.

[22] M. Mitchell, An Introduction to Genetic Algorithms, The MIT Press,

1998.

[23] V. J. Rayward-Smith, A. Clare, On Finding Steiner Vertices, Networks,
Vol.16, 283-294, 1986.

[24] C. C. Ribeiro, M.C. Souza, Tabu Search for the Steiner Problem in
Graphs, Networks, Vol.36, 138-146, 2000.

[25] G. Robins, A. Zelikovsky, Improved Steiner Tree Approximation in

Graphs, in Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 770-779,

2000.

[26] G. Robins, A. Zelikovsky, Tighter Bounds for Graph Steiner Tree
Approximation, SIAM Journal on Discrete Mathematics Vol.19, No.1,

122-134, 2005.

[27] H. Takahashi, A. Matsuyama, An Approximate Solution for the Steiner
Problem in Graphs, Mathematica Japonica, Vol.24, No.6, 573-577,

1980.

[28] P. Winter, J. MacGregor Smith, Path-Distance Heuristics for the Steiner
Problem in Undirected Networks, Algorithmica, Vol.7, 309-327, 1992.

35978-1-4244-2379-8/08/$25.00 (c)2008 IEEE

