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Abstract
The Spoken CALL (Computer-Assisted Language Learning)
2018 shared task requires systems to automatically accept
or reject each single-sentence spoken response depending on
whether the response is correct given a prompt. Spoken re-
sponses are first recognized into texts and then classified as ‘ac-
cept’ or ‘reject’ based on their language and meaning. This
paper describes our system for the shared task. We focused on
improving speech recognition performance, developing a rich
set of features to capture the linguistic and semantic meaning of
the responses, and optimizing classification results for various
factors (training set, n-best hypotheses of speech recognition,
decision threshold, model ensemble). Our system achieves the
best performance among the participating teams.

1. Introduction
As defined in [1], CALL is “the research for and study of ap-
plications of the computer in language teaching and learning.”
Since the first implementations of CALL in 1960’s, the tremen-
dously fast development of technologies has been transform-
ing CALL from simple stimuli and responses by “computer tu-
tors” to leveraging the Internet, multimedia, and Artificial Intel-
ligence [2, 3].

In speaking practice, CALL systems utilizing automatic
speech recognition (ASR) technology offers new abilities to
process learners’ responses for error detection and automated
feedback-generation [4, 5, 6]. As an initiative to further de-
velop related technologies, a shared task for the spoken CALL
research was presented in 2016 and participating systems were
reported in the ISCA SLaTE 2017 workshop [7]. The task is
to provide feedbacks to prompt-based spoken responses by En-
glish learners using the CALL-SLT system [6]. Participating
systems need to accept responses with correct meaning and lan-
guage usage, and reject others. Following the success of the
first shared task with 20 submissions from 9 groups, the sec-
ond edition with new resources and updated training data was
announced in October 2017 and the test data was released in
February 2018 [8]. Similar to the previous edition, the task or-
ganizers provide the audio data, ASR outputs, and reference
response grammar. There are two tasks: the text task where the
ASR outputs for the spoken responses are provided by the orga-
nizers, and the speech task where participants can use their own
recognizers to process audio responses. This paper describes
our system developed for both the text and the speech tasks.

The key components of our system, common to the text and
the speech tasks, are the feature extraction and classification
modules. We derived over 50 features including those borrowed
from prior studies as well as newly proposed ones in this study,
which represent the linguistic quality and semantic correctness
of the responses. The classifier was an ensemble model, with
final decision threshold optimized based on the development

set. In addition, we augmented the reference response gram-
mar to increase its coverage. For the speech task, we made the
following extra efforts. First, we improved ASR performance
by cleaning training data and applying language model (LM)
adaptation. Second, since recognition errors negatively impact
the subsequent classifier, we leveraged multiple ASR outputs
(n-best lists). The shared task results showed that our models
achieved competitive performance, ranking the first in both text
and speech tasks.

2. Spoken CALL shared task
The data used in the shared task are prompt-response pairs
collected from an English course running CALL-SLT devel-
oped for German-speaking Swiss teenagers [8]. Prompts in the
course are written texts in German associated with animation
video clips each showing an English native speaker asking a
question. Each response is labeled as “correct” or “incorrect”
for its linguistic correctness (language) and its meaning respec-
tively. A response is accepted when it is correct in both lan-
guage and meaning given the prompt. Otherwise, it is rejected.
It is possible that a response is correct only in one aspect. The
following shows an example of question, prompt in German
(with English translation), and accepted student response:

Question: How many nights would you like to stay at our hotel?
Prompt: Frag: Zimmer fr 3 Nchte. (Ask: room for 3 nights)
Response: I would like to stay for three nights.

Table 1 shows the information of the data from the 2017
and 2018 tasks. In #reject column, numbers in parentheses are
ungrammatical responses with correct meaning. Different from
the first edition, the second edition of the shared task has ad-
ditional annotations [8]. In particular, the organizers used the
top four systems from the first edition to predict the responses
and split the data into three sets, i.e., A, B, and C. For set A,
at least three systems agreed with each other and at least one
annotator supported the systems’ prediction. Set B includes re-
sponses for which three annotators agreed and at least one sys-
tem predicted the same labels. Set C consists of the remaining
responses. While the second edition provides larger training
data than the first one, participating teams have choices to use
all or part of training data.

For performance evaluation, the organizers propose the D
metric that takes into account different types of false accepts
when evaluating the prediction output [8]. In particular, be-
tween the two types of mis-predictions, i.e., accepting incorrect
responses with wrong meaning vs. accepting responses with
right meaning but incorrect grammar, a higher penalty weight,
k=3, is applied to the former type, which is a more serious error.

3. Our system
We tackle the Spoken CALL challenge by solving a text classi-
fication problem that gives each student response a label accept
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Table 1: Numbers of accepts/rejects in different datasets.

Data set #accept #reject Total

2017 Training 3,880 1,342 (802) 5,222
2017 Test 716 279 (159) 995

2018 Training A 4,225 1,302 (543) 5,526
2018 Training B 90 783 (382) 873
2018 Training C 103 196 (165) 299
2018 Test 750 250 (139) 1,000

or reject depending on whether the response is linguistically and
meaningfully correct. We develop a text classifier based on an
augmented grammar resource, a rich set of features, and an en-
semble learning model. In the text task, we use the ASR outputs
provided by the shared task’s organizers, while in the speech
task, we use the ASR outputs by our own ASR system trained
on the shared task data.

3.1. Prediction features

Given a text form of the response, we extract 54 features for text
classification. First, we implement the syntactic and semantic
features proposed in [9] that achieved good performance in the
first edition of this challenge. Next, we propose new features
enabled by topic models and grammatical error detection. The
features used in our models are described below, with the num-
ber of features shown for each group:

Language model scores (14): The authors in [9] imple-
mented different language models (LMs) based on words and
their part-of-speech (POS) tags from correct responses, incor-
rect responses, and sample responses from the grammar re-
source. We supplement this feature group with LMs obtained
based on production rules, e.g., S = NP + VP, and dependency
rules, e.g., nsubj(like-3, i-1), extracted from the syntactic pars-
ing results using Stanford CoreNLP [10]. We expect the LMs
trained on syntactic parses help capture the linguistic structure,
and thus can differentiate grammatical sentences from ungram-
matical ones. As in [9], we also use two LMs trained on the
words and POS tags extracted from ungrammatical sentences in
the two corpora used for grammatical error correction [11, 12].
Overall there are 14 features in this group.

Prompt-specific LM scores (2): This feature group uses
word-based and POS-based LMs trained on responses for each
prompt [9].

N-gram matching (5): Given a response, we count the total
numbers of matching raw and lemmatized unigrams, bigrams,
and trigrams with each sample response from the reference
grammar, and then the numbers are averaged by the number
of sample responses [9]. In addition, we also calculate numbers
of unigrams, bigrams, and trigrams in the response that are not
found in the reference grammar.

Word embedding (6): As proposed in [9], sample responses
of each prompt are used to train different word embeddings us-
ing both a skip-gram and continuous bag-of-words training al-
gorithms, with embedding dimensions of 30 and 50. We add
embedding with dimension of 15 to obtain total six word em-
bedding models per prompt. Given a response, the maximum
similarity between it and the sample responses is calculated for
each embedding model.

Topic models (1): We use a Latent Dirichlet Allocation im-
plementation [13] to learn a topic model from the sample re-
sponses in the reference grammar, and then calculate the mini-

mum similarity between the topic distributions of the response
and sample responses. We expect the topic model and word em-
bedding features can capture the semantic similarity between
the response and the sample responses in the grammar file.

Prompt-based (7): Because a response must satisfy the con-
tent of the provided prompt, we count the number of prompt
words missing from the response, and the average missing
prompt words normalized by the response’s length. In addi-
tion, we include 5 features counting the numbers of missing
prompt words for the following five POS tag sets: nouns, verbs,
modal verbs, determiners, and prepositions, since we observe
that these are usually more important for linguistic and mean-
ing correctness.

Length (6): We calculate numbers and ratios of tokens and
unrecognized tokens (marked as “*”) for each response, length
ratio of the response with respect to the average length of sam-
ple responses, and whether the response has any words or not.

Parse score (1): This is the ratio of the parse score of the
response (returned by Stanford CoreNLP [10]) and the average
parse score of sample responses.

Grammatical and spelling errors (12): We apply our in-
house grammar error counting tool that is based on neural net-
work models [14] and extract features measuring 11 types of
typical L2 learners’ grammar errors, e.g., article, verb form,
subject verb agreement. In addition, we count number of
spelling errors as described in [9].

3.2. Machine learning models

Several types of machine learning models have been used in the
first edition of this challenge, for example, Support Vector Ma-
chine (SVM), K-Nearest Neighbor models, and Feed-Forward
Neural networks [9, 15, 16].

Our experiments on the data from the 2017 text task show
that tuning a model’s parameters for higher conventional met-
rics, e.g., accuracy or area under curve (AUC), does not always
translate to better D scores. Therefore, rather than using one
model and tuning its parameters, we follow a widely-accepted
practice in many machine learning tasks to use an ensemble of
diverse models. In particular, we utilize four types of models
as base classifiers, including Logistic Regression (LR), Ran-
dom Forest (RF), SVM classifier (SVC), and XGBoost Gradient
Boosting Tree model [17]. Implementations are available in the
Scikit-learn toolkit [18]. On top of these base classifiers, we
use a VotingClassifer to do a soft weighting to aggregate the
base classifiers’ probability outputs

Given the 54 input features, we perform a model-based re-
cursive feature extraction (RFE) operation to select a subset of
features (K). A Random Forest model is used inside the RFE
operation. Also, K value is automatically determined by using
the CV-RFE that runs a separate cross-validation on the train-
ing set to find the optimal K. When converting our model’s
final probability output to the required accept/reject decisions,
we use a threshold t and reject the input response if its predic-
tion probability is lower than t. A lower threshold means that
more correct utterances will be accepted and thus yielding a
lower correct utterance rejection rate (CRej). Since CRej is the
denominator in the D metric [8], a well-controlled lower CRej
value tends to result in higher D score.

3.3. Augmenting grammar resource and cleaning the data

Prior work from the last challenge has shown that text classi-
fication performance can be improved by cleaning input data
and augmenting the reference grammar in a bootstrapped way
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Table 2: WER on the 2017 test set. ∆ column shows relative
(%) WER reduction compared to the baseline.

# ASR model WER ∆

1 Qian et al. [19] 15.6
2 Baseline 15.7
3 (2) + 2018 data 14.3 8.92
4 (3) + silent/indistinct removal 13.8 12.10
5 (4) + prompt-specific LM 13.4 14.65

[19]. We, however, observed that expanding the grammar with
correct responses from training data made our classifier overfit
the training data, possibly due to the dominance of LM-related
features. Therefore, we perform some simple pre-processing to
increase the coverage of the reference grammar without relying
on the responses from the training data too much.1

First, for each sample response in the grammar, we replace
a verb’s contraction form with its complete-word form, and vice
versa, and added to the grammar if the new response did not ex-
ist before. For example, “I am” generates “I’m”, and “they’re”
has replacement “they are”. Second, following [19], we remove
greeting/feeling words at the beginning of the responses, e.g.,
“thank you”, “yes”, “sorry”. Third, for the prompts with regular
expressions (e.g., “at (three ( p m | pm ) | three o’clock)”), we in-
stantiate the expressions for complete sets of prompts, which are
used to extract prompt-based features. Our augmented grammar
consists of over 56K responses, nearly five time larger than the
original grammar.

For feeding our text classifier with higher quality inputs,
we also clean ASR outputs as suggested in [19]: removing
filler sounds (e.g., “uhm”, “mmm”), repeated words (“i want
i want”), greeting/feeling words, and tokens marked unrecog-
nized (after counting). We expect that the removed parts in
a response should not impact human judgment, but make the
cleaned text easier to compare against the grammar.

3.4. Improving speech task

Besides using the above enhancements that work for both text
and speech tasks, we improve the speech task by increasing
ASR accuracy and exploiting n-best hypotheses. To the best
of our knowledge, this is the first time that potential benefit of
using n-best hypotheses is investigated for this challenge.

Our ASR system uses Kaldi [20] and is based on the win-
ning ASR system in the 2017 shared task and [19], which is
provided as the baseline in the 2018 shared task. We improve
ASR performance from three aspects: (1) we add 2018 data
for model training; (2) we clean the training data by filtering
out undesirable utterances, i.e., silent or those with indistinct
words; (3) during ASR decoding for each utterance, we use a
weighted interpolation of the generic LM trained on the entire
training data set (λgeneric = 0.8) and the prompt-specific LM
(λprompt = 0.2) that is trained only on the responses of the cor-
responding prompt. Table 2 shows the word error rate (WER) of
our system on the 2017 test set. The first row presents the ASR
performance reported in [19]. The baseline is our reproduction
of their system. The following rows show the improvements
brought by these efforts.

Since recognition errors impact the subsequent text clas-
sification module, we explore using ASR n-best list as inputs

1We use the first version provided in 2017 rather than the expanded
grammar in 2018 shared by [19].

Table 3: D scores on 2017 test set using different models (t =
0.5). Models are trained using 2017 training data.

Model text speech

LR 4.365 6.636
SVC 4.359 8.329
RF 3.339 6.768
XGB 4.115 8.005

Ensemble (E) 4.376 8.895

for classification. In many spoken language processing tasks,
using more ASR hypotheses in the form of n-best lists or lat-
tices has been shown to be beneficial. On the 2017 test set,
we observe that the oracle WER using 2-best hypotheses is
9.4%, which is significantly better than the 1-best, shown in Ta-
ble 2. We expect that using more ASR candidates may system-
atically address some problems due to incorrectly recognized
words (if any) in ASR outputs (rather than errors caused by the
students). ASR N-best hypotheses were extracted from lattices
using Kaldi’s tools. When using n-best lists, we first compute
the edit-distance between each hypothesis and each sample re-
sponse from the reference grammar. The ASR hypothesis with
the smallest edit-distance is then used as the input of the text
classifier. Then the following feature extraction steps are the
same as when using just the 1-best ASR outputs.

On the 2017 test data, we find that when using 1-best ASR
output for training and top-2 ASR hypotheses in testing, we
achieve the highest performance. However, using top-2 ASR
hypotheses to build training data performs worse. This may be
explained as an issue of over-fitting when the training data is
too similar to the reference grammar, or our current LM fea-
tures extraction, which has very limited negative examples.

4. Experiment results
In this section, we first describe experiments to optimize our
machine learning models. Given the lessons learned, we per-
formed the text and speech tasks with the optimized text classi-
fier and the improved ASR system.

4.1. Model development

In order to evaluate the base classifiers, we use the training and
test sets provided in the 2017 Spoken CALL text and speech
tasks [7]. We use the speech recognition outputs provided by
the task organizers in the text task, and our ASR system for the
speech task. Table 3 shows the D values of different machine
learning models with decision threshold t = 0.5. The results
confirm that the ensemble model obtains the highest D values
in both tasks. Therefore, we use the ensemble model in all of
our experiments.

Different from 2017, the training data in 2018 is split into
three sets. Based on how the accept/reject labels are generated,
we expect that the human generated labels in set B and C are
noisier than A. Therefore we compare the effect of using differ-
ent data sets for model training. Table 4 shows the results using
the ensemble model, with a threshold of 0.5, We can see that
the combination of 2017 training set and 2018 set A yields the
best D score. Therefore, we use this combination as the training
data in the following experiments.

Next, we adjust threshold t to optimize D values. Using
2017 test data for development, results are shown in Table 5.
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Table 4: D scores on 2017 test set using different training sets.
Ensemble model is used, with threshold t = 0.5.

Training set text speech

2017 4.376 8.895
2017 + 2018 A 4.718 9.791
2017 + 2018 A, B, C 3.813 8.749

Table 5: D scores with different decision thresholds.

Decision
threshold

text speech
(1-best)

speech
(2-best)

t = 0.5 4.718 9.791 10.641
t = 0.4 6.033 12.126 15.181
t = 0.35 6.818 13.872 20.832

For the speech task, we show results using 1-best and 2-best
ASR hypotheses to create test data respectively. As we can
see, decreasing the decision threshold generally helps to obtain
higher D scores. When using 2-best ASR hypotheses to select
responses in test data, we observe consistent performance gain
compared to using 1-best. The best D score is obtained when
using t = 0.35, which is significantly higher than the top result
of the 2017 challenge [19]. In our experiments, we also observe
that when twas too small, the number of rejections for incorrect
responses (IRej) was very small, which may violate the task’s
requirements (IRej > 0.25). Therefore, we keep 0.35 as the
minimum t in our experiments.

Among 54 original features, over 40 were selected by CV-
RFE to be used by our ensemble model. Top features reveal
the dominance of language-model and similarity-score features.
Besides, the appearance of prompt-based and length features
supports our belief in their necessity for prompts with few num-
bers of responses.

4.2. Spoken CALL 2018 results

Given the best systems obtained from the above model devel-
opment process, our submissions use models trained by the en-
semble mechanism, and using the 2017 training and 2018 set A
data. For the speech task, we submitted results using 1-best and
2-best hypotheses.

The text task uses the ASR output provided by the organiz-
ers. Our model performance for the text task is shown in Ta-
ble 6, for a few different metrics. The first column presents our
submission codes [8]. Experiments with no submission codes
are conducted after the test results were released. We submitted
results using different thresholds, since we noticed that opti-
mizing the threshold for better D score is not always the best
for other metrics, such as macro F-1 scores. Our submission
LLL with the lowest threshold t achieves the highest D value,
and ranks the best among all the entries of both text and speech
tasks. Our submission KKK, using a higher threshold, yields a
lower D score but higher F-1.

For the speech task, we run our ASR model on both 2017
and 2018 data and use the output to retrain the text classifier.
The top-half of Table 7 presents our results for speech task when
using 1-best ASR output, and the lower part corresponds to us-
ing 2-best lists. Similar to the 2017 test data, we can see that
using 2-best ASR hypotheses improves performance. However,
some observations are worth discussing. First of all, our sub-
mission HHH (t = 0.4) returns D = 13.492, which is the top

Table 6: Performance in the 2018 text task. D scores of our
submissions are highlighted.

Code Model F-1 D IRej

KKK Ensemble, t = 0.5 0.791 11.965 0.399
– Ensemble, t = 0.4 0.766 15.369 0.328
LLL Ensemble, t = 0.35 0.755 19.088 0.305

Table 7: Performance in the 2018 speech task. D scores of our
submissions are highlighted.

Code Model F-1 D IRej

– t=0.5 0.816 11.330 0.453
– t=0.4 0.787 11.792 0.393
III t=0.35 0.772 10.909 0.364

– t=0.5, 2-best 0.803 14.573 0.401
HHH t=0.4, 2-best 0.764 13.492 0.342
– t=0.35, 2-best 0.753 13.237 0.318

among submissions to the speech task, but a higher D = 14.57
can be obtained when t = 0.5.2 This pattern is different from
what we found on the 2017 test data. Secondly, using the tran-
scripts provided after the shared task evaluation, we calculated
our ASR system’s WER on 2018 test set, which is 8.9%, 10%
relatively lower than the WER from the provided ASR results
(10.8%). Even with this better ASR performance, we obtained a
lower D score for the speech task compared to the text task, but
the F-1 scores were higher. We performed some analyses and
found that this was mostly caused by the effect when changing
the decision thresholds. In 2017 data, lowering t helps obtain
higher D score, but not F-1, for both text and speech conditions.
However, that does not hold in 2018 speech task data. In fact,
Table 7 shows that t = 0.35 returns the lowest F-1 and D values
in the speech task. This suggests that the optimal value of de-
cision threshold may not transfer well among tasks and/or data,
which needs more future studies.

5. Conclusions
In this paper, we presented our system for the 2018 Spoken
CALL challenge and reported our submissions to both the text
and speech tasks of the challenge. We first improved the text
classification by using a large number of syntactic and semantic
features, and an ensemble model consisting of diverse classi-
fiers. For the speech task, we further enhanced ASR models
for higher recognition accuracy, and proposed to utilize n-best
ASR hypotheses to reduce the impact of recognition errors. We
achieve the top D scores for both text and speech tasks among
all the participating teams. While the results in the development
data show the benefit using our improved ASR model and n-
best lists, our submissions to the speech task do not yield higher
D scores than our submissions to the text task. This raises a
question of model parameter transfer across tasks and data, and
requires us to conduct further analyses in the future. Further-
more, we will investigate other features that can better represent
n-best ASR hypotheses rather than only using the one that best
matches with the reference grammar.

2We did not submit the result with t = 0.35 since we observed IRej
on the 2017 test set was close to the lower bound 0.25.

2367



6. References
[1] M. Levy, Computer-assisted language learning: Context and con-

ceptualization. Oxford University Press, 1997.

[2] M. Virvou and V. Tsiriga, “Web Passive Voice Tutor: an in-
telligent computer assisted language learning system over the
WWW,” in Proceedings IEEE International Conference on Ad-
vanced Learning Technologies, 2001, pp. 131–134.

[3] T. Heift and D. Nicholson, “Theoretical and Practical Considera-
tions for Web-Based Intelligent Language Tutoring Systems,” in
Intelligent Tutoring Systems, G. Gauthier, C. Frasson, and K. Van-
Lehn, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 354–362.

[4] B. Penning de Vries, S. Bodnar, C. Cucchiarini, H. Strik, and R. v.
Hout, “Spoken grammar practice in an ASR-based CALL sys-
tem,” in Speech and Language Technology in Education (SLaTE),
Grenoble, France, 2013, pp. 60–65.

[5] C. Cucchiarini, S. Bodnar, B. Penning de Vries, R. V. Hout, and
H. Strik, “ASR-based CALL Systems and Learner Speech Data:
New Resources and Opportunities for Research and Development
in Second Language Learning.” Reykjavik, Iceland: European
Language Resources Association (ELRA), May 2014.

[6] E. Rayner, N. Tsourakis, C. Baur, P. Bouillon, and J. Gerlach,
“CALL-SLT: A Spoken CALL System Based on Grammar
and Speech Recognition,” Linguistic Issues in Language
Technology, vol. 10, no. 2, 2014. [Online]. Available: https:
//archive-ouverte.unige.ch/unige:42119

[7] C. Baur, C. Chua, J. Gerlach, M. Rayner, M. Russell, H. Strik,
and X. Wei, “Overview of the 2017 Spoken CALL Shared
Task,” in Proc. 7th ISCA Workshop on Speech and Language
Technology in Education, 2017, pp. 71–78. [Online]. Available:
http://dx.doi.org/10.21437/SLaTE.2017-13

[8] C. Baur, A. Caines, C. Chua, J. Gerlach, M. Qian, Manny Rayner,
Martin Russell, Helmer Strik, and Xizi Wei, “Overview of the
2018 Spoken CALL Shared Task,” in Interspeech 2018, India,
Sep. 2018.

[9] A. Magooda and D. Litman, “Syntactic and semantic features
for human like judgement in spoken CALL,” in Proc. 7th
ISCA Workshop on Speech and Language Technology in
Education, 2017, pp. 109–114. [Online]. Available: http:
//dx.doi.org/10.21437/SLaTE.2017-19

[10] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky, “The Stanford CoreNLP Natural Language
Processing Toolkit,” in Association for Computational Linguistics
(ACL) System Demonstrations, 2014, pp. 55–60. [Online].
Available: http://www.aclweb.org/anthology/P/P14/P14-5010

[11] R. Dale and A. Kilgarriff, “Helping Our Own: The HOO 2011
Pilot Shared Task,” in Proceedings of the Generation Challenges
Session at the 13th European Workshop on Natural Language
Generation. Nancy, France: Association for Computational
Linguistics, Sep. 2011, pp. 242–249. [Online]. Available:
http://www.aclweb.org/anthology/W11-2838

[12] H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H.
Susanto, and C. Bryant, “The CoNLL-2014 Shared Task
on Grammatical Error Correction,” in Proceedings of the
Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association
for Computational Linguistics, Jun. 2014, pp. 1–14. [Online].
Available: http://www.aclweb.org/anthology/W14-1701

[13] X.-H. Phan and C.-T. Nguyen, “GibbsLDA++: A C/C++ imple-
mentation of latent Dirichlet allocation (LDA),” Technical report,
Tech. Rep., 2007.

[14] C. Wang, R. Li, and H. Lin, “Deep Context Model for Grammati-
cal Error Correction,” in Proc. 7th ISCA Workshop on Speech and
Language Technology in Education, Aug. 2017, pp. 167–171.

[15] K. Evanini, M. Mulholland, E. Tsuprun, and Y. Qian, “Using
an Automated Content Scoring Engine for Spoken CALL
Responses: The ETS submission for the Spoken CALL

Challenge,” in Proc. 7th ISCA Workshop on Speech and
Language Technology in Education, 2017, pp. 97–102. [Online].
Available: http://dx.doi.org/10.21437/SLaTE.2017-17

[16] Y. R. Oh, H.-B. Jeon, H. J. Song, B. O. Kang, Y.-K. Lee,
J.-G. Park, and Y.-K. Lee, “Deep-Learning Based Automatic
Spontaneous Speech Assessment in a Data-Driven Approach for
the 2017 SLaTE CALL Shared Challenge,” 2017, pp. 103–108.
[Online]. Available: http://dx.doi.org/10.21437/SLaTE.2017-18

[17] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD
’16. New York, NY, USA: ACM, 2016, pp. 785–794. [Online].
Available: http://doi.acm.org/10.1145/2939672.2939785

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[19] M. Qian, X. Wei, P. Janovi, and M. Russell, “The University
of Birmingham 2017 SLaTE CALL Shared Task Systems,”
in Proc. 7th ISCA Workshop on Speech and Language
Technology in Education, 2017, pp. 91–96. [Online]. Available:
http://dx.doi.org/10.21437/SLaTE.2017-16

[20] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, and
others, “The Kaldi speech recognition toolkit,” in IEEE 2011
workshop on automatic speech recognition and understanding.
IEEE Signal Processing Society, 2011.

2368


