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OBSERVATIONS: 
• Peer reviews address instructor/TA workload and help 

student develop writing and evaluation skills 
• However, a disparity between expert (instructor/TA) and 

peer grades is unavoidable 
OUR GOALS: 
• Better understand the validity [3] of peer assessment 
• Identify peer outliers in terms of rating disparity with 

experts 
METHODS: 
• Classify peers into groups of low and high rating disparity 

with experts using only features derived from peer 
reviews 

Introduction 
• For each student report section (instance), calculate 

absolute difference (rating disparity) between means of 
peer and expert ratings 

• For each dataset, split instances into Low group and High 
group according to median of rating disparity 

• Predict whether rating disparity of an instance is Low or 
High 
 
 
 
 
 
 
 
 
 
 
 

Binary Classification Task 

 
 
 
 
 
 
 
 
 

• Peers and experts agree more (lower rating disparity) 
when peers give high grades (Tab. 4) 

• The two topic diversity metrics both positively correlate to 
the Std peer ratings (Tab. 5) 

• No correlation between peer rating reliability, in terms of 
Std, Euc or KL, and rating validity in terms of disparity with 
experts 

• Figure 1 shows such a case: peer ratings are of low 
reliability (Std=3) but high validity (Mn=5.5 vs. Expert-
rate=6) 

• In future, improve predictive accuracy by adding features 
extracted from student papers 

• Study different rating validity measurements 

Discussion and Future Work 
• Peer and expert reviews of the same report assignment, 

Physics Lab classes 2010-2011 
• Student reports were organized into sections: abstract, 

introduction, experiment, analysis, and conclusion 
• SWoRD [2] was used to assign reports to reviewers for 

grading and commenting via rubric 
• All classes had 1 or 2 experts review and rate reports 
• Number of peers per report varied from 1 to 7 
• Rating scaled from 1 (poor) to 7 (excellent) 

Peer Review Data 

Table 2. Means of rating disparity in the low and high groups (p < 
0.01) of 5 datasets 
Section  Abstract  Intro.  Exper.  Analysis  Concl.  

Low 0.37 0.30 0.38 0.40 0.30 

High 1.51 1.39 1.53 1.65 1.61 

RATING FEATURES: 
• #Peers: number of peer reviewers per instance 
• Mn and Std: mean and STDEV of peer ratings 

 
COMMENT FEATURES: 
• For each dataset, a standard LDA [3] run over all peer 

comments 
• Topic diversity is measured as distance between topic 

distribution using Euclidean distance (Euc) and Kullback–
Leibler divergence (KL) 

• For each instance, inter-comment topic diversity is 
quantified by the average distance of all comment pairs in 
the set 

Machine Learning Features 
Table 4. Correlation coefficients between Mn and Rating Disparity (p < 
0.01) 
Section  Abstract  Intro.  Exper.  Analysis  Concl.  
Corr. -0.21 -0.37 -0.38 -0.4 -0.35 

Table 5. Correlation coefficients between topic diversity and Rating Std 
(p < 0.01). Similar results are for KL metric 
Section  Abstract  Intro.  Exper.  Analysis  Concl.  

Euc 0.38 0.38 0.45 0.39 0.45 
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An Example Instance of Reviews 

Fig. 1  Reviews of student and expert of a Introduction section for a 
student report. Left to right: reviewer, rating, comment 

R1  7   […] everything is explained clearly. Experiment 3 and 4 
were perfect. 

R2  7   Really nice job! […] I understood everything you were 
saying. 

R3  7   A lot of equations you could probably get rid of some of 
the basic ones, other than that it was very good. 

R4  1   
[…] There was little to no theory in this section. […] Try to 
explain more of the symbols […] as many of them are 
unclear. 

Expert  6   
You provide most of the critical equations […]. You are 
also good at balancing the equation and the description 
of the theory. 

• Rating features yield significantly higher accuracies than 
majority baseline (Tab. 3, Col. 2) 

• Comment features outperform baseline for 3 of 5 sections 
(Tab. 3, Col. 3) 

• Adding topic features do not further improve the use of 
rating features (Tab. 3, Col. 4) 
 
 
 
 
 
 
 
 
 
 

Experimental Results 

Table 3. Prediction accuracies with 10-fold cross 
 validation. * denotes p < 0.05 compared to majority baseline 

Section Majority #Peers 
+ Mn + Std 

#Peers 
+ Euc + KL All 

Abstract 54.98 61.66 * 56.27 61.06 * 
Intro. 50.69 60.40 * 61.62 * 59.91 * 
Exper. 51.10 63.15 * 58.61 * 62.82 * 
Analysis 51.07 62.43 * 51.07 62.07 * 
Concl. 54.42 67.02 * 59.17 * 66.86 * 

Table 1. Number of instances of each section 

Section  Abstract  Intro.  Exper.  Analysis  Concl.  

# inst. 362 361 362 280 362 
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