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What is the Dirichlet Process?
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Bayes Rule

P(θ|D,m) =
P(D|θ,m)P(θ|m)

P(D|m)

Model Comparison

P(m|D) =
P(D|m)P(m)

P(D)

P(D|m) =

∫
P(D|θ,m)P(θ|m)dθ

Prediction

P(x |m,D) =

∫
P(x |θ,D,m)P(θ|D,m)dθ

=

∫
P(x |θ,m)P(θ|D,m)dθ (if x is i.i.d given θ)
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Model Selection
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Selecting m, the number of Gaussians in a mixture model
Selection m, the order of a polynomial in a nonlinear regression
model
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Parametric Modeling and Model Selection

Two criteria
How well the model fits the data
How complex the model is

However, real data is complicated
Any small finite number seems unreasonable
Any order polynomial seems unreasonable

Huy Nguyen (Univ. Pittsburgh) Dirichlet Process CS3750 6 / 50



Nonparametric Bayes Dirichlet Process Representations Applications Inference Summary

Bayesian Nonparametric Models

Bayesian methods are the most powerful when prior distribution
adequately captures the belief
Inflexible model yields unreasonable inference: complex model
often causes overfitting.
Nonparametric models are a way of getting very flexible model
Bayesian nonparametric models is to fit a single model that can
adapt its complexity to the data

Complexity grows as more data are observed
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Dirichlet Distribution

The Dirichlet distribution is a distribution over the K -dimensional probability
simplex:

∆K = {(π1, ..., πK ) : πk ≥ 0,
∑

k πk = 1}
Then π = (π1, ..., πK ) is Dirichlet distributed

(π1, ..., πK ) ∼ Dirichlet(α1, ..., αK )

with parameters α = (α1, ..., αK ), αk > 0 if:

p(π1, ..., πK |α) =
Γ(
∑

k αk )∏
k Γ(αk )

∏
k

π
αk−1
k

E[πk ] =
αk

α0

Var[πk ] =
αk (α0 − αk )

α2
0(α0 + 1)

where α0 =
∑

k αk
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Dirichlet Distribution

α = (2 , 2, 2) α = (5 , 5, 5) α = (2 , 2, 25)

α = [10 , 10, 10]
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Conjugate prior

Dirichlet distribution is conjugate to multinomial distribution
Let

π ∼ Dirichlet(α)

c|π ∼ Multinomial(.|π)

p(c = k |π) = πk

Then we have
p(π|c = k , α) = Dirichlet(α′)

where α′
k = αk + 1, α′

i = αi∀i 6= k
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Agglomerative property of Dirichlet distributions

Combining entries by their sum

(π1, ..., πK ) ∼ Dirichlet(α1, ..., αK )

⇒ (π1, ..., πi + πj , ..., πK ) ∼ Dirichlet(α1, ..., αi + αj , ..., αK )

The converse of the agglomerative property is also true

(π1, ..., πK ) ∼ Dirichlet(α1, ..., αK )

(τ1, τ2) ∼ Dirichlet(αiβ1, αiβ2)

⇒ (π1, ..., πiτ1, πiτ2, ..., πK ) ∼ Dirichlet(α1, ..., αiβ1, αiβ2, ..., αK )

where β1 + β2 = 1
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Finite Mixture Models

Select one of K cluster from
distribution π = (π1, ..., πK )

Generate a data point from a
cluster-specific probability distribution

p(x |Φ, π) =
K∑

k=1

πk p(x |Φk )

where Φ = (Φ1, ...,ΦK ) and Φk are
parameters for cluster k .

Frequentist approach: use maximize
likelihood to learn parameters (π,Φ)
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Finite Mixture Models (cont.)

Define an underlying measure

G =
K∑

k=1

πkδΦk

where δΦk is an atom at Φk

Process of drawing a sample from
finite mixture model is as follow:
i = 1..N

θi ∼ G

xi ∼ p(·|θi )

where θi is one of underlying Φk .

G

θi

xi

N

Ω
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Bayesian Finite Mixture Models

Need priors on parameters π and Φ

Priors for Φ is model-specific

Place Dirichlet prior on the mixing
portions π

π ∼ Dirichlet(α0/K , ..., α0/K )

The prior mean of πk is
equal to 1/K
The prior variance of πk is
proportional to 1/α0
α0 is called concentration
parameter

G

θi

xi

N

Ω

α

G0
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Bayesian Finite Mixture Models (cont.)

Φk ∼ G0

π ∼ Dirichlet(α0/K , ..., α0/K )

G =
K∑

k=1

πkδΦk

θi ∼ G

xi ∼ p(·|θi )

G0 is a random measure.

G

θi

xi

N

Ω

α

G0
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Nonparametric or Infinite Mixture Models

How to choose number of mixture components?
Dirichlet Process provide a nonparametric Bayesian mixture
models
Define a countably infinite mixture model by taking K to infinity
Dirichlet process is a flexible, nonparametric prior over an infinite
number of clusters/classes as well as the parameters for those
classes.
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Gaussian Process (recall)

GP defines a distribution over functions f : X → R
For any input points x1, x2, ...xn, we require:

(f (x1), f (x2), ...f (xn)) ∼ N (µ,Σ)

Gaussian process for nonlinear regression

D = (x , y)

yi = f (xi) + εi

f ∼ GP(·|0, c)

εi ∼ N (·|0, σ2)
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Gaussian Process
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Dirichlet Process

Dirichlet Process is a distribution over probability measures on a
measurable space
A draw from DP is a random distribution over that space
Definition: Let G0 be a probability measure on measurable space
Ω and α ∈ R+. The Dirichlet process is a distribution over
probability measure G on Ω such that for any finite partition
(A1, ...,AK ) of Ω, we have:

(G(A1), ...,G(AK )) ∼ Dirichlet(αG0(A1), ..., αG0(AK ))
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Dirichlet Process
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Figure: Left: base measure G0, Middle: partition with K = 3, Right: partition
with K = 5
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Dirichlet Process

(G(A1), ...,G(AK )) ∼ Dirichlet(αG0(A1), ..., αG0(AK ))

G0 is called based distribution, likes the mean of DP

∀A ⊂ Ω,E[G(A)] = G0(A)

α is called concentration parameter

Var[G(A)] =
G0(A)(1−G0(A))

α + 1

G

xi

i

G0

n
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Posterior Dirichlet Process

Given

G ∼ DP(α,G0)

θ ∼ G

Fix a partition (A1, ...,AK )

(G(A1), ...,G(AK )) ∼ Dirichlet(αG0(A1), ..., αG0(AK ))

p(θ ∈ Ak |G) = G(Ak )

p(θ ∈ Ak ) = G0(Ak )

Then the posterior is also DP

(G(A1), ...,G(AK ))|θ ∼ Dirichlet(αG0(A1) + δθ(A1), ..., αG0(AK ) + δθ(AK ))

G|θ ∼ DP
(
α + 1,

αG0 + δθ
α + 1

)
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Posterior Dirichlet Process

The posterior is also DP

(G(A1), ...,G(AK ))|θ ∼ Dirichlet(αG0(A1) + δθ(A1), ..., αG0(AK ) + δθ(AK ))

G|θ ∼ DP
(
α + 1,

αG0 + δθ
α + 1

)

For a fixed partition, we get a standard Dirichlet update

For the “cell” A that contains θ, δθ(A) = 1

This is true no matter how small the cell is

Generalize with n observation

G|θ1, ..., θn ∼ DP
(
α + n,

αG0 +
∑n

i=1 δθi

α + n

)
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The Dirichlet Process and Clustering

G|θ1, ..., θn ∼ DP
(
α + n,

αG0 +
∑n

i=1 δθi

α + n

)
E[G(A)|θ1, ..., θn] =

αG0 +
∑n

i=1 δθi

α + n

When n→∞,

E[G(A)|θ1, ..., θn] =
∞∑

k=1

πkδΦk (A)

Φk is the “k th cluster” of unique values of θi

πk = limn→∞ nk/n, nk is number of “data point” in Φk

This suggests that random measure G ∼ DP(α,G0) are
discrete with probability 1

G

θi

xi

N

Ω

α

G0
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Blackwell-MacQueen Urn Scheme

Blackwell-MacQueen urn scheme produces a sequence θ1, θ2... with the
following conditionals

1st step

θ1|G ∼ G G ∼ DP(α,G0)

⇒ θ1 ∼ G0 G|θ1 ∼ DP
(
α + 1,

αG0+δθ1
α+1

)
2nd step

θ2|θ1,G ∼ G
⇒ θ2|θ1 ∼ αG0+δθ

α+1 G|θ1, θ2 ∼ DP
(
α + 2,

αG0+δθ1
+δθ2

α+1

)
nth step

θn|θ1:n,G ∼ G

⇒ θn|θ1:n ∼ αG0+
∑n−1

i=1 δθi
α+n−1 G|θ1:n ∼ DP

(
α + n,

αG0+
∑n

i=1 δθi
α+n

)
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Blackwell-MacQueen Urn Scheme

Picking balls of different colors from an urn
Start with no balls in the urn
With prob. ∝ α draw color θn ∼ G0 and add a ball of that color into
the urn
With prob. ∝ n − 1 pick a ball at random from the urn, record θn to
be its color then place the ball with another ball of same color into
urn
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Blackwell-MacQueen Urn Scheme

Starting with a DP, we constructed Blackwell-MacQueen urn
scheme
The reverse is possible using de Finetti’s Theorem

The joint probability distribution underlying the data is invariant to
permutation

p(θ1, ..., θn) =

∫ n∏
i=1

p(θi |G)dP(G)

Since θi are iid ∼ G, they are exchangeable
Thus a distribution over measures must exist making them i.i.d
This is DP
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Chinese Restaurant Process

1 2

3

4 5

6 7
8 9

10

Tables

Customers

Observations

Parameters

θ1 θ3 θ4 θ5θ2

The first customer sits at the first table

Assume K occupied tables, n customers, and nk customers sit at table k

mth subsequent customer sits at a table

k with prob. = nk/(n − 1 + α)
K + 1 with prob. = α/(n − 1 + α)

Each table k has a value Φk drawn from a base distribution G0

Customer’s value θn is assigned from his table’s value
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Chinese Restaurant Process

A random process in which n customers sit down in a Chinese restaurant with an
infinite number of tables.

Each table k has a value Φk drawn from a base distribution G0

Customer’s value θn is assigned from his table’s value

θn|θ1, ..., θn−1,G0, α ∼
αG0

n − 1 + α
+

∑K
k=1 nkδΦk

n − 1 + α

CRP is the corresponding distribution over partitions, so CRP is exchangeable

p(θ1, ..., θn) =

∫ n∏
i=1

p(θi |G)dP(G)

If the DP is the prior on G, then the CRP is obtained when we integrate out G

Huy Nguyen (Univ. Pittsburgh) Dirichlet Process CS3750 29 / 50



Nonparametric Bayes Dirichlet Process Representations Applications Inference Summary

Chinese Restaurant Process

If the DP is the prior on G, then the CRP is obtained when we
integrate out G

Gα 0

G0

θi

xi

α 0

G0

θi

xi
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Stick-breaking Process
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α1=1.0, α2=0.1

α1=1.0, α2=1.0

α1=1.0, α2=5.0

α1=1.0, α2=10.0

α1=9.0, α2=3.0

Define a sequence of Beta random
variables βk ∼ Beta(1, α)

β1

π1

π2

π3

π4

π5

β2

β3

β4

β5

1−β 1

1−β 2

1−β 3

1−β 4

Define a sequence of mixing
proportions

πk = βk

k=1∏
l=1

(1− βl )
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Stick-breaking Process

We can easily see
∑∞

k=1 πk = 1

1−
K∑

k=1

πk = 1− β1 − β2(1− β1)− ...

= (1− β1)(1− β2)− β3(1− β1)(1− β2)− ...

=
K∏

k=1

(1− βk )

G =
∑∞

k=1 πk Φk has a clean definition of a random measure

It is proved that G is a Dirichlet process
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Stick-breaking Construction

G|θ ∼ DP
(
α + 1,

αG0 + δθ
α + 1

)

Given observation θ, consider a partition (θ,Ω\θ)

(G(θ),G(Ω\θ)) ∼ Dirichlet
(

(α + 1)
αG0 + δθ
α + 1

(θ), (α + 1)
αG0 + δθ
α + 1

(Ω\θ)

)
= Dirichlet(1, α)

⇒ G = βδθ + (1− β)G′ with β ∼ Beta(1, α)

Agglomerative property of Dirichlet distributions implies G′ ∼ DP(α,G0)

Given observation θ′

G = βδθ + (1− β)(β′δθ′ + (1− β′)G′′)
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Density Estimation

G ∼ DP(α,G0)

Problem: G is a discrete distribution; in particular it has no density!

Solution: Convolve the DP with a smooth distribution

G ∼ DP(α,G0)

Fx (·) =

∫
F (·|θ)dG(θ)

xi ∼ Fx

⇒

G =
∞∑

k=1

πkδΦk

Fx (·) =
∞∑

k=1

πk F (·|δΦk )

xi ∼ Fx

Huy Nguyen (Univ. Pittsburgh) Dirichlet Process CS3750 34 / 50



Nonparametric Bayes Dirichlet Process Representations Applications Inference Summary

Density Estimation
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Dirichlet Process Mixture

DPs are discrete with probability one, so they are not suitable for use as a prior
on continuous densities

In a Dirichlet Process Mixture, we draw the parameters of a mixture model from
a draw from a DP

In mixture models setting, θi is the parameter associated with data point xi

Dirichlet process is prior on θi

G ∼ DP(α,G0)

θi |G ∼ G

xi |θi ∼ F (·|θi )

For example, if F (·|θi ) is a Gaussian density with parameters θi , then we have a
Dirichlet Process Mixture of Gaussians
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Samples from a DP Mixture of Gaussians

More structure
(clusters) appear as
you draw more points
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Clustering with Dirichlet Process Mixture

G =
∞∑

k=1

πkδΦk

Fx (·) =
∞∑

k=1

πk F (·|δΦk )

xi ∼ Fx

The above model equivalent to

zi = Multinomial(π)

θi = Φzi

xi |zi ∼ F (·|Φzi )
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Clustering with Dirichlet Process Mixture

DP mixture models are used in a variety of clustering applications, where the
number of clusters is not known a priori

They are also used in applications in which we believe the number of clusters
grows without bound as the amount of data grows

DPs have also found uses in applications beyond clustering, where the number
of latent objects is not known or unbounded

Huy Nguyen (Univ. Pittsburgh) Dirichlet Process CS3750 39 / 50



Nonparametric Bayes Dirichlet Process Representations Applications Inference Summary

Monte Carlo Integration

We want to to compute the integral

I =

∫
h(x)f (x)dx

where f (x) is a probability density function
We can approximate this as

Î =
1
N

N∑
i=1

h(Xi)dx

where X1, ...,XN are sampled from f
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Makov Chain Monte Carlo

Random variable is a Markov process if the transition probabilities depends only
on the random variable’s current state

Pr(Xt+1 = sj |X0 = sk , ...,Xt = sj ) = Pr(Xt+1 = sj |Xt = sj )

Problem in Monte Carlo integration is sampling from some complex probability
distribution f (x)

Attempts to solve this problem are the roots of MCMC methods

Metropolis-Hastings algorithm use an arbitrary transition probability function
q(Xt |Xt−1), and setting the acceptance probability for a candidate point

α = min
(

f (X∗)q(Xt−1|X∗)
f (Xt−1)q(X∗|Xt−1)

, 1
)

where X∗ is candidate point sampled from q(X∗|Xt−1)
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Gibbs Sampling

A special case of Metropolis-Hastings sampling wherein the random candidate
value is always accepted

The task remains to specify how to construct a Markov Chain whose values
converge to the target distribution

The key to the Gibbs sampler is that one only considers univariate conditional
distributions

Consider a bivariate random variable (x , y), the sampler proceeds as follows

xi ∼ f (x |y = yi−1)

yi ∼ f (y |x = xi )
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Variational Inference

Problem of MCMC methods are they can be slow to converge and their
convergence can be difficult to diagnose

The basic idea of variational inference is to formulate the computation of a
marginal or conditional probability in terms of an optimization problem

In Bayesian setting, we are usually interested in the posterior of p(m|D, θ)

In variational inference, we define an alternative family of distributions q(m|ν)
where ν is called free variational parameters

The optimization problem we want to solve is

arg min
q

KL [q(m|ν)‖p(m|D, θ)]

Huy Nguyen (Univ. Pittsburgh) Dirichlet Process CS3750 43 / 50



Nonparametric Bayes Dirichlet Process Representations Applications Inference Summary

Inference for Dirichlet Process Mixtures

The posterior distribution under DP mixture models cannot be
computed efficiently in any direct way. It must be approximated.

Gibbs sampling (e.g. Escobar and West, 1995; Neal, 2000;
Rasmussen, 2000)
Variational approximation (Blei and Jordan, 2005)
Expectation propagation (Minka and Ghahramani, 2003)
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MCMC for Dirichlet Process Mixtures

Key insight is to take advantage of exchangeability
E.g. in CRP table that customer i sit is conditional on the seating
choices of all other customers
Easy when customer i is the last customer to arrive
By exchangeability, can swap customer i with the final customer
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MCMC for Dirichlet Process Mixtures
What does this look like in action? 

!
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Variational Inference for Dirichlet Process Mixtures

Truncated DP: stick-breaking with fixing a value T and make
βT = 1
Implies πk = 0 with k > T

GT =
T∑

k=1

πkδΦk

is known as Truncated DP
GT is used to learn G
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Variational Inference for Dirichlet Process Mixtures

Initial state 1st iteration 5th (and last) iteration

Huy Nguyen (Univ. Pittsburgh) Dirichlet Process CS3750 48 / 50



Nonparametric Bayes Dirichlet Process Representations Applications Inference Summary

Summary

Nonparametric Bayesian models allow for much flexibility, but
need to place measures on measures
The most important setting is the Dirichlet mixture model which
are mixture models with countably infinite number of components
Dirichlet process is “just” a glorified Dirichlet distribution
Draws from a DP are probability measures consisting of a
weighted sum of point masses
Many representations: Blackwell-MacQueen urn scheme,
Chinese restaurant process, stick-breaking construction
Development of approximation for DP mixtures has enabled its
application to practical data analysis problem
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Thank you!

(G (A 1 ) , . . . , G (A n ))
� Dir( α0G 0 (A 1 ) , . . . , α0G 0 (A n ))
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