# The Effects of Entrainment in a Tutoring Dialogue System

Huy Nguyen, Jesse Thomason CS 3710 – University of Pittsburgh

#### Outline

- Introduction
- Corpus
- Post-Hoc Experiment
- Results
- Summary

#### Introduction

- Spoken dialogue systems can offer students one-on-one instruction from a computer tutor
- Student entrainment to computer tutor voice has been shown to correlate with learning gain (Ward and Litman, 2007; 2008)
- A system encouraging or responding to entrainment might lead to better student performance

#### Introduction

- The CMU Let's Go!! bus information system elicited user entrainment to improve speech recognition (Raux and Eskenazi, 2004)
- For tutoring systems, knowing which entrainment features are correlated with learning could inform this strategy
- We searched an existing intelligent tutoring dialogue system corpus to find such correlations

#### Outline

- Introduction
- Corpus
- Post-Hoc Experiment
- Results
- Summary

## Corpus

- Our data comes from a 2005 experiment with ITSPOKE
- Each student interacted with either a prerecorded or synthesized tutor voice (Forbes-Riley et al., 2006)
- Students responded to tutor questions both verbally and with written essays for 5 problem dialogues

## Corpus

 We omit Students who started but did not complete a problem in a past session

This left us with 26 students

• Effects of tutor voice, but not entrainment, were examined in (Forbes-Riley et al., 2006)

## Corpus and Motivations

 Student pre- and post-test scores, satisfaction evaluations of the system, ASR word-error rate per student, and other student metadata were available

 We investigate whether the level of student entrainment had any correlation with learning gain, user satisfaction, or word-error rate

## Corpus and Motivations

 Whether student entrainment differed significantly between the pre-recorded and synthesized voices was also of interest

 Inspired by (Pardo, 2006), we were also interested the relationship between user gender and entrainment

## Outline

- Introduction
- Corpus
- Post-Hoc Experiment
- Results
- Summary

## Hypotheses

- 1. a positive correlation between entrainment and learning gain
- 2. a positive correlation between entrainment and user satisfaction
- 3. a negative correlation between entrainment and word-error-rate
- 4. higher entrainment coefficients for students interacting with the pre-recorded tutor voice
- 5. higher entrainment coefficients for males

#### **Entrainment Features**

- Lexical and prosodic
- Lexical based on coarser-grained, free-form student essays
- Prosodic based on finer-grained, exchangelevel student utterances
- All entrainment scores calculated on a perproblem basis, then averaged to obtain student entrainment value

#### Lexical Entrainment Features

- We take word repetition as primary measurement of entrainment
  - Not counting repeated words between turns
- ITSPOKE tutoring format:
  - Student reads the problem, writes initial essay

Reference essay

Computer tutor evaluates, guide to improve

T-S conversation

- Student re-writes the essay, submit again

**Edited essay** 

#### Observation 1

Students' answers are typically short



#### Observation 2

 Learning evidence are shown by occurrence of new terms, and lost of other terms

#### Reference essay:

No the earth does not pull equally on the sun. The <u>mass</u> of the earth is much smaller than the sun. So it pulls with a smaller force. This is why the earth <u>orbits</u> the sun.

\_\_\_\_\_\_

#### Edited essay:

No the earth does pull equally on the sun because of **Newton's Third Law**. The force is **gravitational**. It is **equal** and **opposite**.

# Lexical entrainment as understanding to suggestions

- Knowledge entrainment through language
- Consider non-stop words
  - in tutor responses
  - appear in edited essay
  - but not in reference essay
- Also, non-stop words
  - appear in reference essay
  - but not in edited essay

New-word

Removed-word

#### Three metrics

#### 1. new-word:

$$mean \left( \frac{\text{number of new words}}{\text{number of tutor responses}} \right)$$

#### 2. new+removed-word:

$$mean \left( \frac{\text{number of new words} + \text{removed words}}{\text{number of tutor responses}} \right)$$

#### 3. essay-length:

#### Prosodic Entrainment Features

- Our method is inspired by the metric used to find entrainment in (Ward and Litman, 2007)
  - Itself inspired by the method in (Reitter et al., 2006)

 openSMILE to get mean, min, max, and standard deviation of the energy (RMS) and pitch (F0) of every utterance

#### Prosodic Entrainment Features

- Strict turn-taking offers verbal student responses to most tutor utterances
- We created progressive, exchange-level similarity scores between the student and tutor
- We used a linear regression to find the change in those similarity scores throughout each dialogue

#### Prosodic Entrainment Features

 For each problem dialogue and raw prosodic feature, our algorithm is implemented as follows



## **Experimental Methods**

- We looked for significance in:
- Correlations entrainment scores and student properties relevant to hypotheses
- Those same correlations for low and high pretesters (using a median split)
- Differences in mean between users' entrainment in the pre-recorded and synthesized voice conditions and between male and female entrainment to the system

## **Experimental Methods - Control**

- Re-performed these tests on a randomized baseline corpus
- Tutor turns remained in place as student responses were randomly paired with tutor turns from which they did not originally follow
- No relationships which appeared significant in the original corpus appeared in the randomized corpus

## Experimental Methods - Metrics

- For learning gain, we considered:
  - Standard Learning Gain (SLG)
    - post pre
  - Normalized Learning Gain (NLG)
    - (post − pre) / (1 − pre)
- User satisfaction, UsrSat, based on sum of survey questions in (Forbes-Riley et al., 2006)

## Outline

- Introduction
- Corpus
- Post-Hoc Experiment
- Results
- Summary

#### Results and Discussion

- We denote:
- Significant (p < 0.05) results with \*</li>
- Highly significant (p < 0.01) results with \*\*</li>
- All other shown results are trending (p < 0.1)</li>

- 12 Low pre-test student (under median)
- 10 High pre-test student (above media)

## **Support Hypothesis 1**

- "a positive correlation between entrainment and learning gain"
- When considering all students, we found:

| <b>Student Data</b> | Entrainment      | (r-value) |
|---------------------|------------------|-----------|
| SLG                 | new+removed-word | 0.447*    |
| SLG                 | essay-length     | 0.348     |
| NLG                 | new+removed-word | 0.382     |

 We note that prosodic features were not found indicative of learning gain

## **Support Hypothesis 2**

- "a positive correlation between entrainment and user satisfaction"
- With respect to UsrSat, we found mostly positive correlations with prosodic features:

| Group          | Entrainment | (r-value) |
|----------------|-------------|-----------|
| ALL            | RMS max     | 0.536**   |
| Low pre-tester | F0 max      | 0.623*    |
| Low pre-tester | RMS max     | 0.554     |
| Low pre-tester | F0 mean     | -0.533    |

## Reject Hypothesis 3

- "a negative correlation between entrainment and word-error-rate"
- WER often did not correlate at all
- When considering high pre-testers, we found:

| Student Data | Entrainment | (r-value) |
|--------------|-------------|-----------|
| WER          | RMS mean    | 0.771**   |
| WER          | RMS stddev  | 0.693*    |

## Support Hypotheses 4,5

- "higher entrainment coefficients for students interacting with the pre-recorded tutor voice"
  - RMS mean\* and RMS stddev entrainment higher in the pre-recorded voice condition
- "higher entrainment coefficients for males"
  - F0 min entrainment higher among males

#### Outline

- Introduction
- Corpus
- Post-Hoc Experiment
- Results
- Summary

## Summary

- 1. a positive correlation between lexical entrainment and learning gain
- 2. a positive correlation between prosodic entrainment and user satisfaction
- 3. a negative correlation between prosodic entrainment and word-error-rate
- 4. higher prosodic entrainment for students interacting with the pre-recorded tutor voice
- higher prosodic entrainment coefficients for males

## Summary

- We support existing claims that:
  - entrainment may affect student performance in intelligent spoken tutor dialogue systems
  - tutor voice and gender both play roles in entrainment
- Our findings suggest that:
  - dialogue-level entrainment correlates with learning gain and trends against satisfaction
  - short-term, prosodic entrainment correlates with satisfaction
- Encouraging entrainment from their users may elicit higher learning gain and user satisfaction
  - the duration of that elicited entrainment must be considered

# The Effects of Entrainment in a Tutoring Dialogue System

Huy Nguyen, Jesse Thomason CS 3710 – University of Pittsburgh

#### All Correlations

| Student Data | Entrainment      | (r-value) |
|--------------|------------------|-----------|
| SLG          | new+removed-word | 0.447*    |
| SLG          | RMS min          | -0.367    |
| SLG          | essay-length     | 0.348     |
| NLG          | RMS min          | -0.558**  |
| NLG          | new+removed-word | 0.382     |
| UsrSat       | RMS max          | 0.536**   |
| UsrSat       | new-word         | -0.330    |

Student data correlated with entrainment features

## Low pre-test correlation

| Student Data | Entrainment | (r-value) |
|--------------|-------------|-----------|
| UsrSat       | F0 max      | 0.623*    |
| UsrSat       | RMS max     | 0.554     |
| UsrSat       | F0 mean     | -0.533    |

Low pre-test student (12 total) data correlated with entrainment features

## **High Pre-test Correlations**

| Student Data | Entrainment | (r-value) |
|--------------|-------------|-----------|
| SLG          | RMS min     | -0.708*   |
| SLG          | F0 stddev   | 0.582     |
| NLG          | RMS min     | -0.720*   |
| NLG          | RMS mean    | 0.554     |
| WER          | RMS mean    | 0.771**   |
| WER          | RMS stddev  | 0.693*    |

High pre-test student (10 total) data correlated with entrainment features

#### **Tutor Voice and Gender**

- Voice: RMS mean \* and RMS stddev entrainment higher in the pre-recorded (12 students) than synthesized (14 students) condition
- Gender: F0 min entrainment higher among males (11 students) than females (15 students)